network plasticity
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 22)

H-INDEX

22
(FIVE YEARS 4)

Author(s):  
Yi-Hua Chen ◽  
Neng-Yuan Hu ◽  
Ding-Yu Wu ◽  
Lin-Lin Bi ◽  
Zheng-Yi Luo ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Lei Cui ◽  
Sha Tao ◽  
Heng-chan Yin ◽  
Qi-qi Shen ◽  
Yuan Wang ◽  
...  

Objective: This study used resting-state functional magnetic resonance imaging to investigate the effects of 8 weeks of Tai Chi Chuan and general aerobic exercise on the topological parameters of brain functional networks, explored the advantages of Tai Chi Chuan for improving functional network plasticity and cognitive flexibility, and examined how changes in topological attributes of brain functional networks relate to cognitive flexibility.Methods: Thirty-six healthy adults were grouped into Tai Chi Chuan (Bafa Wubu of Tai Chi), general aerobic exercise (brisk walking), and control groups. All of the subjects underwent fMRI and behavioral assessment before and after the exercise intervention.Results: Tai Chi Chuan exercise significantly enhanced the clustering coefficient and local efficiency compared with general aerobic exercise. Regarding the nodal properties, Tai Chi Chuan significantly enhanced the nodal clustering coefficient of the bilateral olfactory cortex and left thalamus, significantly reduced the nodal clustering coefficient of the left inferior temporal gyrus, significantly improved the nodal efficiency of the right precuneus and bilateral posterior cingulate gyrus, and significantly improved the nodal local efficiency of the left thalamus and right olfactory cortex. Furthermore, the behavioral performance results demonstrated that cognitive flexibility was enhanced by Tai Chi Chuan. The change in the nodal clustering coefficient in the left thalamus induced by Tai Chi Chuan was a significant predictor of cognitive flexibility.Conclusion: These findings demonstrated that Tai Chi Chuan could promote brain functional specialization. Brain functional specialization enhanced by Tai Chi Chuan exercise was a predictor of greater cognitive flexibility.


Oecologia ◽  
2021 ◽  
Author(s):  
Benjamin Schwarz ◽  
Carsten F. Dormann ◽  
Diego P. Vázquez ◽  
Jochen Fründ

AbstractTemporal variability of plant–pollinator interactions is important for fully understanding the structure, function, and stability of plant–pollinator networks, but most network studies so far have ignored within-day dynamics. Strong diel dynamics (e.g., a regular daily cycle) were found for networks with Cichorieae, which typically close their flowers around noon. Here, we experimentally prevented early flower closure to test whether these dynamics are driven by the temporally limited availability of Cichorieae, or by timing of pollinator activity. We further tested if the dynamics involving Cichorieae and their pollinators also affect the dynamics on other plants in the network. Finally, we explored the structure of such manipulated networks (with Cichorieae available in the morning and afternoon) compared to unmanipulated controls (Cichorieae available only in the morning). We found that flower closure of Cichorieae is indeed an important driver of diel network dynamics, while other drivers of pollinator timing appeared less important. If Cichorieae flowers were available in the afternoon, they were visited by generalist and specialist pollinators, which overall decreased link turnover between morning and afternoon. Effects of afternoon availability of Cichorieae on other plants in the network were inconclusive: pollinator switching to and from Cichorieae tended to increase. On the level of the aggregated (full-day) network, the treatment resulted in increased dominance of Cichorieae, reducing modularity and increasing plant generality. These results highlight that network dynamics can be predicted by knowledge of diel or seasonal phenology, and that fixed species timing assumptions will misrepresent the expected dynamics.


2021 ◽  
Vol 89 (9) ◽  
pp. S373-S374
Author(s):  
Sean Nestor ◽  
Arsalan Mir-Moghtadaei ◽  
Fidel Vila-Rodriguez ◽  
Peter Giacobbe ◽  
Zafiris J. Daskalakis ◽  
...  

2021 ◽  
Author(s):  
Emily T. Cowan ◽  
Matthew Fain ◽  
Ian O’Shea ◽  
Lauren M. Ellman ◽  
Vishnu P. Murty

AbstractThe detection of novelty indicates changes in the environment and the need to update existing representations. In response to novelty, interactions across the ventral tegmental area (VTA)-hippocampal circuit support experience-dependent plasticity in the hippocampus. While theories have broadly suggested plasticity-related changes are also instantiated in the cortex, research has also shown evidence for functional heterogeneity in cortical networks. It therefore remains unclear how the hippocampal-VTA circuit engages cortical networks, and whether novelty targets specific cortical regions or diffuse, large-scale cortical networks. To adjudicate the role of the VTA and hippocampus in cortical network plasticity, we used human functional magnetic resonance imaging (fMRI) to compare resting state functional coupling before and following exposure to novel scene images. Functional coupling between right anterior hippocampus and VTA was enhanced following novelty exposure. However, we also found evidence for a double dissociation, with anterior hippocampus and VTA showing distinct patterns of post-novelty functional coupling enhancements, targeting task-relevant regions versus large-scale networks, respectively. Further, significant correlations between these networks and the novelty-related plasticity in the anterior hippocampal-VTA functional network suggest the central hippocampal-VTA network may facilitate the interactions with the cortex. These findings support an extended model of novelty-induced plasticity, in which novelty elicits plasticity-related changes in both local and global cortical networks.Significance StatementNovelty detection is critical for adaptive behavior, signaling the need to update existing representations. By engaging the bi-directional hippocampal-VTA circuit, novelty has been shown to induce plasticity-related changes in the hippocampus. However, it remains an open question how novelty targets such plasticity-related changes in cortical networks. We show that anterior hippocampus and VTA target cortical networks at different spatial scales, with respective enhancements in post-novelty functional coupling with a task-relevant cortical region and a large-scale memory network. The results presented here support an extended model of novelty-related plasticity, in which engaging the anterior hippocampal-VTA circuit through novelty exposure propagates cortical plasticity through hippocampal and VTA functional pathways at distinct scales, targeting specific or diffuse cortical networks.


2020 ◽  
Vol 117 (42) ◽  
pp. 25999-26007
Author(s):  
Joshua M. Grolman ◽  
Philipp Weinand ◽  
David J. Mooney

Mammalian cell morphology has been linked to the viscoelastic properties of the adhesion substrate, which is particularly relevant in biological processes such as wound repair and embryonic development where cell spreading and migration are critical. Plastic deformation, degradation, and relaxation of stress are typically coupled in biomaterial systems used to explore these effects, making it unclear which variable drives cell behavior. Here we present a nondegradable polymer architecture that specifically decouples irreversible creep from stress relaxation and modulus. We demonstrate that network plasticity independently controls mesenchymal stem cell spreading through a biphasic relationship dependent on cell-intrinsic forces, and this relationship can be shifted by inhibiting actomyosin contractility. Kinetic Monte Carlo simulations also show strong correlation with experimental cell spreading data as a function of the extracellular matrix (ECM) plasticity. Furthermore, plasticity regulates many ECM adhesion and remodeling genes. Altogether, these findings confirm a key role for matrix plasticity in stem cell biophysics, and we anticipate this will have ramifications in the design of biomaterials to enhance therapeutic applications of stem cells.


Author(s):  
Irene Chacon-De-La-Rocha ◽  
Gemma L. Fryatt ◽  
Andrea D. Rivera ◽  
Laura Restani ◽  
Matteo Caleo ◽  
...  

AbstractOligodendrocyte progenitor cells (OPCs) are responsible for generating oligodendrocytes, the myelinating cells of the CNS. Life-long myelination is promoted by neuronal activity and is essential for neural network plasticity and learning. OPCs are known to contact synapses and it is proposed that neuronal synaptic activity in turn regulates OPC proliferation and differentiation. To examine this in the adult, we performed unilateral injection of the synaptic blocker botulinum neurotoxin A (BoNT/A) into the hippocampus of adult mice. We confirm BoNT/A cleaves SNAP-25 in the CA1 are of the hippocampus, which has been proven to block neurotransmission. Notably, synaptic silencing by BoNT/A significantly decreased OPC density and caused their shrinkage, as determined by immunolabelling for the OPC marker NG2. Inhibition of synaptic activity resulted in an overall decrease in the number of OPC processes, as well as a decrease in their lengths and branching frequency. These data indicate that synaptic activity is important for maintaining adult OPC numbers and cellular integrity, which is relevant to pathological scenarios characterized by decreased synaptic activity.


2020 ◽  
Vol 382 (1) ◽  
pp. 15-45 ◽  
Author(s):  
Tanja Brigadski ◽  
Volkmar Leßmann

Abstract The neurotrophic factor BDNF is an important regulator for the development of brain circuits, for synaptic and neuronal network plasticity, as well as for neuroregeneration and neuroprotection. Up- and downregulations of BDNF levels in human blood and tissue are associated with, e.g., neurodegenerative, neurological, or even cardiovascular diseases. The changes in BDNF concentration are caused by altered dynamics in BDNF expression and release. To understand the relevance of major variations of BDNF levels, detailed knowledge regarding physiological and pathophysiological stimuli affecting intra- and extracellular BDNF concentration is important. Most work addressing the molecular and cellular regulation of BDNF expression and release have been performed in neuronal preparations. Therefore, this review will summarize the stimuli inducing release of BDNF, as well as molecular mechanisms regulating the efficacy of BDNF release, with a focus on cells originating from the brain. Further, we will discuss the current knowledge about the distinct stimuli eliciting regulated release of BDNF under physiological conditions.


Sign in / Sign up

Export Citation Format

Share Document