scholarly journals 2PT222 Two-dimensional cellular automata simulation of the self-assembly and self-reproduction phenomenon of cell(The 50th Annual Meeting of the Biophysical Society of Japan)

2012 ◽  
Vol 52 (supplement) ◽  
pp. S142
Author(s):  
Takeshi Ishida
2014 ◽  
Vol 24 (01) ◽  
pp. 1430002 ◽  
Author(s):  
Selman Uguz ◽  
Uḡur Sahin ◽  
Hasan Akin ◽  
Irfan Siap

This paper studies the theoretical aspects of two-dimensional cellular automata (CAs), it classifies this family into subfamilies with respect to their visual behavior and presents an application to pseudo random number generation by hybridization of these subfamilies. Even though the basic construction of a cellular automaton is a discrete model, its macroscopic behavior at large evolution times and on large spatial scales can be a close approximation to a continuous system. Beyond some statistical properties, we consider geometrical and visual aspects of patterns generated by CA evolution. The present work focuses on the theory of two-dimensional CA with respect to uniform periodic, adiabatic and reflexive boundary CA (2D PB, AB and RB) conditions. In total, there are 512 linear rules over the binary field ℤ2for each boundary condition and the effects of these CA are studied on applications of image processing for self-replicating patterns. After establishing the representation matrices of 2D CA, these linear CA rules are classified into groups of nine and eight types according to their boundary conditions and the number of neighboring cells influencing the cells under consideration. All linear rules have been found to be rendering multiple self-replicating copies of a given image depending on these types. Multiple copies of any arbitrary image corresponding to CA find innumerable applications in real life situation, e.g. textile design, DNA genetics research, statistical physics, molecular self-assembly and artificial life, etc. We conclude by presenting a successful application for generating pseudo numbers to be used in cryptography by hybridization of these 2D CA subfamilies.


2018 ◽  
Vol 6 (31) ◽  
pp. 8405-8410 ◽  
Author(s):  
Furkan H. Isikgor ◽  
Chilla Damodara Reddy ◽  
Mengsha Li ◽  
Hikmet Coskun ◽  
Bichen Li ◽  
...  

2D hybrid perovskites are formed through the self assembly of polyaniline with PbI6 octahedra.


2010 ◽  
Vol 50 (supplement2) ◽  
pp. S106-S107
Author(s):  
Kohsuke Ara ◽  
Miho Tagawa ◽  
Koh-ichiroh Shohda ◽  
Kenzo Fujimoto ◽  
Akira Suyama

Author(s):  
Kostiantyn V. Domasevitch ◽  
Vira V. Ponomarova

In the structures of the title salts, poly[[μ4-4-(3,5-dinitropyrazol-4-yl)-3,5-dinitropyrazol-1-ido]rubidium], [Rb(C6HN8O8)] n , (1), and its isostructural caesium analogue [Cs(C6HN8O8) n , (2), two independent cations M1 and M2 (M = Rb, Cs) are situated on a crystallographic twofold axis and on a center of inversion, respectively. Mutual intermolecular hydrogen bonding between the conjugate 3,5-dinitopyrazole NH-donor and 3,5-dinitropyrazole N-acceptor sites of the anions [N...N = 2.785 (2) Å for (1) and 2.832 (3) Å for (2)] governs the self-assembly of the translation-related anions in a predictable fashion. Such one-component modular construction of the organic subtopology supports the utility of the crystal-engineering approach towards designing the structures of polynitro energetic materials. The anionic chains are further linked by multiple ion–dipole interactions involving the 12-coordinate cations bonded to two pyrazole N-atoms [Rb—N = 3.1285 (16), 3.2261 (16) Å; Cs—N = 3.369 (2), 3.401 (2) Å] and all of the eight nitro O-atoms [Rb—O = 2.8543 (15)–3.6985 (16) Å; Cs—O = 3.071 (2)–3.811 (2) Å]. The resulting ionic networks follow the CsCl topological archetype, with either metal or organic ions residing in an environment of eight counter-ions. Weak lone pair–π-hole interactions [pyrazole-N atoms to NO2 groups; N...N = 2.990 (3)–3.198 (3) Å] are also relevant to the packing. The Hirshfeld surfaces and percentage two-dimensional fingerprint plots for (1) and (2) are described.


Sign in / Sign up

Export Citation Format

Share Document