synthetic biology approach
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Agata Lesniewska ◽  
Guy Griffin ◽  
Paul K Freemont ◽  
Karen M Polizzi ◽  
Simon J Moore

In synthetic biology, biosensors are routinely coupled to a gene expression cascade for detecting small molecules and physical signals. We posit that an alternative direct protein (DiPro) biosensor mechanism, could provide a new opportunity for rapid detection of specific chemicals. Herein, we reveal a fluorescent curcumin DiPro biosensor, based on the Escherichia coli double bond reductase (EcCurA) as a detection system. We characterise the curcumin DiPro biosensor and propose enhanced fluorescence is generated through π-π stacking between protein and ligand. Using a cell-free synthetic biology approach, we use the DiPro biosensor to fine-tune 10 reaction parameters (cofactor, substrate, and enzyme levels), assisted through acoustic liquid handling robotics. Overall, we increase curcumin DiPro biosensor fluorescence by 80-fold. We propose a generic DiPro biosensor fluorescence mechanism that can be further exploited for a wider range of chemicals that share intrinsic fluorescence and have a suitable binding protein.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 964
Author(s):  
Katrin Geisler ◽  
Mark A. Scaife ◽  
Paweł M. Mordaka ◽  
Andre Holzer ◽  
Eleanor V. Tomsett ◽  
...  

Chlamydomonas reinhardtii has many attractive features for use as a model organism for both fundamental studies and as a biotechnological platform. Nonetheless, despite the many molecular tools and resources that have been developed, there are challenges for its successful engineering, in particular to obtain reproducible and high levels of transgene expression. Here we describe a synthetic biology approach to screen several hundred independent transformants using standardised parts to explore different parameters that might affect transgene expression. We focused on terminators and, using a standardised workflow and quantitative outputs, tested 9 different elements representing three different size classes of native terminators to determine their ability to support high level expression of a GFP reporter gene. We found that the optimal size reflected the median size of element found in the C. reinhardtii genome. The behaviour of the terminator parts was similar with different promoters, in different host strains and with different transgenes. This approach is applicable to the systematic testing of other genetic elements, facilitating comparison to determine optimal transgene design.


2021 ◽  
Author(s):  
Katrin Geisler ◽  
Mark A. Scaife ◽  
Pawel M. Mordaka ◽  
Andre Holzer ◽  
Payam Mehrshahi ◽  
...  

Chlamydomonas reinhardtii has many attractive features for use as a model organism for both fundamental studies and as a biotechnological platform. Nonetheless, despite the many molecular tools and resources that have been developed, there are challenges for its successful engineering, in particular to obtain reproducible and high levels of transgene expression. Here we describe a synthetic biology approach to screen several hundred independent transformants using standardised parts to explore different parameters that might affect transgene expression. We focused on terminators and, using a standardised workflow and quantitative outputs, tested 9 different elements representing three different size classes of native terminators to determine their ability to support high level expression of a GFP reporter gene. We found that the optimal size reflected the median size of element found in the C. reinhardtii genome. The behaviour of the terminator parts was similar with different promoters, in different host strains and with different transgenes. This approach is applicable to the systematic testing of other genetic elements, facilitating comparison to determine optimal transgene design.


2021 ◽  
Author(s):  
Aaron J Hinz ◽  
Benjamin R Stenzler ◽  
Alexandre J Poulain

Microbial bioreporters provide direct insight into cellular processes by producing a quantifiable signal dictated by reporter gene expression. The core of a bioreporter is a genetic circuit in which a reporter gene (or operon) is fused to promoter and regulatory sequences that govern its expression. In this study, we develop a system for constructing novel Escherichia coli bioreporters based on Golden Gate assembly, a synthetic biology approach for the rapid and seamless fusion of DNA fragments. Gene circuits are generated by fusing promoter and reporter sequences encoding yellow fluorescent protein, mCherry, bacterial luciferase, and an anaerobically active flavin-based fluorescent protein. We address a barrier to the implementation of Golden Gate assembly by designing a series of compatible destination vectors that can accommodate the assemblies. We validate the approach by measuring the activity of constitutive bioreporters and mercury and arsenic biosensors in quantitative exposure assays. We also demonstrate anaerobic quantification of mercury and arsenic in biosensors that produce flavin-based fluorescent protein, highlighting the expanding range of redox conditions that can be examined by microbial bioreporters.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249388
Author(s):  
Reina E. Ito ◽  
Chitose Oneyama ◽  
Kazuhiro Aoki

Oncogene addiction is a cellular property by which cancer cells become highly dependent on the expression of oncogenes for their survival. Oncogene addiction can be exploited to design molecularly targeted drugs that kill only cancer cells by inhibiting the specific oncogenes. Genes and cell lines exhibiting oncogene addiction, as well as the mechanisms by which cell death is induced when addicted oncogenes are suppressed, have been extensively studied. However, it is still not fully understood how oncogene addiction is acquired in cancer cells. Here, we take a synthetic biology approach to investigate whether oncogenic mutation or oncogene expression suffices to confer the property of oncogene addiction to cancer cells. We employed human mammary epithelium-derived MCF-10A cells expressing the oncogenic KRAS or BRAF. MCF-10A cells harboring an oncogenic mutation in a single-allele of KRAS or BRAF showed weak transformation activity, but no characteristics of oncogene addiction. MCF-10A cells overexpressing oncogenic KRAS demonstrated the transformation activity, but MCF-10A cells overexpressing oncogenic BRAF did not. Neither cell line exhibited any oncogene addiction properties. These results indicate that the introduction of oncogenic mutation or the overexpression of oncogenes is not sufficient for cells to acquire oncogene addiction, and that oncogene addiction is not associated with transformation activity.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 343
Author(s):  
Elizabeth S. Li ◽  
Margaret S. Saha

Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abhiney Jain ◽  
Jeffrey A. Gralnick

AbstractNeutrophilic Fe(II) oxidizing bacteria like Mariprofundus ferrooxydans are obligate chemolithoautotrophic bacteria that play an important role in the biogeochemical cycling of iron and other elements in multiple environments. These bacteria generally exhibit a singular metabolic mode of growth which prohibits comparative “omics” studies. Furthermore, these bacteria are considered non-amenable to classical genetic methods due to low cell densities, the inability to form colonies on solid medium, and production of copious amounts of insoluble iron oxyhydroxides as their metabolic byproduct. Consequently, the molecular and biochemical understanding of these bacteria remains speculative despite the availability of substantial genomic information. Here we develop the first genetic system in neutrophilic Fe(II) oxidizing bacterium and use it to engineer lithoheterotrophy in M. ferrooxydans, a metabolism that has been speculated but not experimentally validated. This synthetic biology approach could be extended to gain physiological understanding and domesticate other bacteria that grow using a single metabolic mode.


Sign in / Sign up

Export Citation Format

Share Document