scholarly journals Scope for latitudinal extension of reef corals is species specific

2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Joshua Madin ◽  
Andrew Allen ◽  
Andrew Baird ◽  
John Pandolfi ◽  
Brigitte Sommer
Keyword(s):  
2015 ◽  
Vol 162 (3) ◽  
pp. 717-723 ◽  
Author(s):  
Emma M. Gibbin ◽  
Hollie M. Putnam ◽  
Ruth D. Gates ◽  
Matthew R. Nitschke ◽  
Simon K. Davy

2020 ◽  
Vol 14 (4) ◽  
pp. 945-958 ◽  
Author(s):  
Christopher B. Wall ◽  
Mario Kaluhiokalani ◽  
Brian N. Popp ◽  
Megan J. Donahue ◽  
Ruth D. Gates

AbstractReef corals are mixotrophic organisms relying on symbiont-derived photoautotrophy and water column heterotrophy. Coral endosymbionts (Family: Symbiodiniaceae), while typically considered mutualists, display a range of species-specific and environmentally mediated opportunism in their interactions with coral hosts, potentially requiring corals to rely more on heterotrophy to avoid declines in performance. To test the influence of symbiont communities on coral physiology (tissue biomass, symbiont density, photopigmentation) and nutrition (δ13C, δ15N), we sampled Montipora capitata colonies dominated by a specialist symbiont Cladocopium spp. or a putative opportunist Durusdinium glynnii (hereafter, C- or D-colonies) from Kāne‘ohe Bay, Hawai‘i, across gradients in photosynthetically active radiation (PAR) during summer and winter. We report for the first time that isotope values of reef corals are influenced by Symbiodiniaceae communities, indicative of different autotrophic capacities among symbiont species. D-colonies had on average 56% higher symbiont densities, but lower photopigments per symbiont cell and consistently lower δ13C values in host and symbiont tissues; this pattern in isotope values is consistent with lower symbiont carbon assimilation and translocation to the host. Neither C- nor D-colonies showed signs of greater heterotrophy or nutritional plasticity; instead changes in δ13C values were driven by PAR availability and photoacclimation attributes that differed between symbiont communities. Together, these results reveal Symbiodiniaceae functional diversity produces distinct holobionts with different capacities for autotrophic nutrition, and energy tradeoffs from associating with opportunist symbionts are not met with increased heterotrophy.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Joshua Madin ◽  
Andrew Allen ◽  
Andrew Baird ◽  
John Pandolfi ◽  
Brigitte Sommer
Keyword(s):  

Author(s):  
Linda Sicko-Goad

Although the use of electron microscopy and its varied methodologies is not usually associated with ecological studies, the types of species specific information that can be generated by these techniques are often quite useful in predicting long-term ecosystem effects. The utility of these techniques is especially apparent when one considers both the size range of particles found in the aquatic environment and the complexity of the phytoplankton assemblages.The size range and character of organisms found in the aquatic environment are dependent upon a variety of physical parameters that include sampling depth, location, and time of year. In the winter months, all the Laurentian Great Lakes are uniformly mixed and homothermous in the range of 1.1 to 1.7°C. During this time phytoplankton productivity is quite low.


2005 ◽  
Vol 173 (4S) ◽  
pp. 18-18
Author(s):  
Joseph C. Liao ◽  
Mitra Mastali ◽  
David A. Haake ◽  
Bernard M. Churchill

1960 ◽  
Vol 15 (10) ◽  
pp. 665-665
Author(s):  
George S. Grosser
Keyword(s):  

1996 ◽  
Vol 76 (06) ◽  
pp. 1090-1095 ◽  
Author(s):  
C Ravanat ◽  
M Freund ◽  
S Schuhler ◽  
P Grunert ◽  
L Meyer ◽  
...  

SummaryThe purpose of this study was to develop specific and sensitive immunoassays to detect early indices of hypercoagulability in the rat. Rat platelet factor 4 (rPF4) and rat fibrinopeptide A (rFPA) assays, tools for the detection of activation of platelets and coagulation respectively, were designed using antibodies raised against purified rPF4 and against synthetic rFPA. The relevance of these new assays and of the commercially available ELISA kit for thrombin-antithrombin III (TAT) complexes was demonstrated in a rat model of a prethrombotic state induced by intravenous infusion of varying doses of thromboplastin (90 to 2400 μl/kg/h). In this model, the immunoassays allowed simultaneous detection of low levels of rFPA and rPF4 which were correlated with fibrinogen and platelet consumption and TAT generation and further proved to be of higher sensitivity than the classical methods of platelet count or measurement of fibrinogen levels. Plasma concentrations of rFPA, rPF4 and TAT were dependent on infusion time and thromboplastin dose, while hirudin (1 mg/kg) prevented their appearance. Thus the new specific immunoassays for rPF4 and rFPA and the commercial human TAT assay represent useful tools for pathophysiological studies or the screening of antithrombotic drugs in rats.


Sign in / Sign up

Export Citation Format

Share Document