scholarly journals The Density of the Time to Ruin in the Classical Poisson Risk Model

2005 ◽  
Vol 35 (01) ◽  
pp. 45-60 ◽  
Author(s):  
David C.M. Dickson ◽  
Gordon E. Willmot

We derive an expression for the density of the time to ruin in the classical risk model by inverting its Laplace transform. We then apply the result when the individual claim amount distribution is a mixed Erlang distribution, and show how finite time ruin probabilities can be calculated in this case.

2005 ◽  
Vol 35 (1) ◽  
pp. 45-60 ◽  
Author(s):  
David C.M. Dickson ◽  
Gordon E. Willmot

We derive an expression for the density of the time to ruin in the classical risk model by inverting its Laplace transform. We then apply the result when the individual claim amount distribution is a mixed Erlang distribution, and show how finite time ruin probabilities can be calculated in this case.


2002 ◽  
Vol 32 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Wang Rongming ◽  
Liu Haifeng

AbstractIn this paper a class of risk processes in which claims occur as a renewal process is studied. A clear expression for Laplace transform of the finite time ruin probability is well given when the claim amount distribution is a mixed exponential. As its consequence, a well-known result about ultimate ruin probability in the classical risk model is obtained.


2007 ◽  
Vol 2 (2) ◽  
pp. 217-232 ◽  
Author(s):  
D. C. M. Dickson

ABSTRACTIn the classical risk model, we use probabilistic arguments to write down expressions in terms of the density function of aggregate claims for joint density functions involving the time to ruin, the deficit at ruin and the surplus prior to ruin. We give some applications of these formulae in the cases when the individual claim amount distribution is exponential and Erlang(2).


2002 ◽  
Vol 32 (2) ◽  
pp. 299-313 ◽  
Author(s):  
David C.M. Dickson ◽  
Howard R. Waters

AbstractWe study the distribution of the time to ruin in the classical risk model. We consider some methods of calculating this distribution, in particular by using algorithms to calculate finite time ruin probabilities. We also discuss calculation of the moments of this distribution.


1991 ◽  
Vol 21 (2) ◽  
pp. 199-221 ◽  
Author(s):  
David C. M. Dickson ◽  
Howard R. Waters

AbstractIn this paper we present an algorithm for the approximate calculation of finite time survival probabilities for the classical risk model. We also show how this algorithm can be applied to the calculation of infinite time survival probabilities. Numerical examples are given and the stability of the algorithms is discussed.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Huiming Zhu ◽  
Ya Huang ◽  
Xiangqun Yang ◽  
Jieming Zhou

We focus on the expected discounted penalty function of a compound Poisson risk model with random incomes and potentially delayed claims. It is assumed that each main claim will produce a byclaim with a certain probability and the occurrence of the byclaim may be delayed depending on associated main claim amount. In addition, the premium number process is assumed as a Poisson process. We derive the integral equation satisfied by the expected discounted penalty function. Given that the premium size is exponentially distributed, the explicit expression for the Laplace transform of the expected discounted penalty function is derived. Finally, for the exponential claim sizes, we present the explicit formula for the expected discounted penalty function.


1999 ◽  
Vol 5 (3) ◽  
pp. 575-584 ◽  
Author(s):  
D.C.M. Dickson

ABSTRACTIn this paper we review three algorithms to calculate the probability of ruin/survival in finite time for the classical risk model. We discuss the computational aspects of these algorithms and consider the question of which algorithm should be preferred.


Sign in / Sign up

Export Citation Format

Share Document