Weakly Supervised Syllable Segmentation by Vowel-Consonant Peak Classification

Author(s):  
Ravi Shankar ◽  
Archana Venkataraman
1988 ◽  
Vol 53 (3) ◽  
pp. 316-327 ◽  
Author(s):  
Alan G. Kamhi ◽  
Hugh W. Catts ◽  
Daria Mauer ◽  
Kenn Apel ◽  
Betholyn F. Gentry

In the present study, we further examined (see Kamhi & Catts, 1986) the phonological processing abilities of language-impaired (LI) and reading-impaired (RI) children. We also evaluated these children's ability to process spatial information. Subjects were 10 LI, 10 RI, and 10 normal children between the ages of 6:8 and 8:10 years. Each subject was administered eight tasks: four word repetition tasks (monosyllabic, monosyllabic presented in noise, three-item, and multisyllabic), rapid naming, syllable segmentation, paper folding, and form completion. The normal children performed significantly better than both the LI and RI children on all but two tasks: syllable segmentation and repeating words presented in noise. The LI and RI children performed comparably on every task with the exception of the multisyllabic word repetition task. These findings were consistent with those from our previous study (Kamhi & Catts, 1986). The similarities and differences between LI and RI children are discussed.


Forests ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 768
Author(s):  
Jin Pan ◽  
Xiaoming Ou ◽  
Liang Xu

Forest fires are serious disasters that affect countries all over the world. With the progress of image processing, numerous image-based surveillance systems for fires have been installed in forests. The rapid and accurate detection and grading of fire smoke can provide useful information, which helps humans to quickly control and reduce forest losses. Currently, convolutional neural networks (CNN) have yielded excellent performance in image recognition. Previous studies mostly paid attention to CNN-based image classification for fire detection. However, the research of CNN-based region detection and grading of fire is extremely scarce due to a challenging task which locates and segments fire regions using image-level annotations instead of inaccessible pixel-level labels. This paper presents a novel collaborative region detection and grading framework for fire smoke using a weakly supervised fine segmentation and a lightweight Faster R-CNN. The multi-task framework can simultaneously implement the early-stage alarm, region detection, classification, and grading of fire smoke. To provide an accurate segmentation on image-level, we propose the weakly supervised fine segmentation method, which consists of a segmentation network and a decision network. We aggregate image-level information, instead of expensive pixel-level labels, from all training images into the segmentation network, which simultaneously locates and segments fire smoke regions. To train the segmentation network using only image-level annotations, we propose a two-stage weakly supervised learning strategy, in which a novel weakly supervised loss is proposed to roughly detect the region of fire smoke, and a new region-refining segmentation algorithm is further used to accurately identify this region. The decision network incorporating a residual spatial attention module is utilized to predict the category of forest fire smoke. To reduce the complexity of the Faster R-CNN, we first introduced a knowledge distillation technique to compress the structure of this model. To grade forest fire smoke, we used a 3-input/1-output fuzzy system to evaluate the severity level. We evaluated the proposed approach using a developed fire smoke dataset, which included five different scenes varying by the fire smoke level. The proposed method exhibited competitive performance compared to state-of-the-art methods.


2020 ◽  
Author(s):  
XiaoQing Bu ◽  
YuKuan Sun ◽  
JianMing Wang ◽  
KunLiang Liu ◽  
JiaYu Liang ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 437
Author(s):  
Yuya Onozuka ◽  
Ryosuke Matsumi ◽  
Motoki Shino

Detection of traversable areas is essential to navigation of autonomous personal mobility systems in unknown pedestrian environments. However, traffic rules may recommend or require driving in specified areas, such as sidewalks, in environments where roadways and sidewalks coexist. Therefore, it is necessary for such autonomous mobility systems to estimate the areas that are mechanically traversable and recommended by traffic rules and to navigate based on this estimation. In this paper, we propose a method for weakly-supervised recommended traversable area segmentation in environments with no edges using automatically labeled images based on paths selected by humans. This approach is based on the idea that a human-selected driving path more accurately reflects both mechanical traversability and human understanding of traffic rules and visual information. In addition, we propose a data augmentation method and a loss weighting method for detecting the appropriate recommended traversable area from a single human-selected path. Evaluation of the results showed that the proposed learning methods are effective for recommended traversable area detection and found that weakly-supervised semantic segmentation using human-selected path information is useful for recommended area detection in environments with no edges.


2020 ◽  
Author(s):  
Jiahui Liu ◽  
Changqian Yu ◽  
Beibei Yang ◽  
Changxin Gao ◽  
Nong Sang

Sign in / Sign up

Export Citation Format

Share Document