scholarly journals Nanoliter-scale next-generation sequencing library-mediated high-throughput 16S rRNA microbial community profiling

BioTechniques ◽  
2020 ◽  
Vol 68 (4) ◽  
pp. 204-210
Author(s):  
Hui Zhang ◽  
Xiangdan Yu ◽  
Zhe Zhang ◽  
Zhenhua Liu ◽  
Cong Tang ◽  
...  

An ultra-high-throughput workflow for next-generation sequencing library construction at nanoliter scale for amplicon sequencing, termed Smartchip Nanowell Platform for Target Enrichment, was established using a nanodispenser system and a nanoliter-scale PCR chip. To demonstrate its cost and time advantages over conventional methods for library construction, quality control and pooling for large-scale samples, target amplicon sequencing of the 16S ribosomal RNA gene V3-V4 region widely used for microbial community profiling was chosen for comparison. The finding of no significant difference in microbial community profiling between the two methods strongly supports the conclusion that Smartchip Nanowell Platform for Target Enrichment is a cost-effective method for next-generation sequencing library construction for large-scale samples to conduct amplicon sequencing-based applications.

2018 ◽  
Author(s):  
A. Lenore Ackerman ◽  
Jennifer Tash Anger ◽  
Muhammad Umair Khalique ◽  
James E Ackerman ◽  
Jie Tang ◽  
...  

Abstract Introduction. Recent data suggest the urinary tract hosts a microbial community of varying composition, even in the absence of infection. Culture-independent methodologies, such as next-generation sequencing of conserved ribosomal DNA sequences, provide an expansive look at these communities, identifying both common commensals and fastidious organisms. A fundamental challenge has been the isolation of DNA representative of the entire resident microbial community, including fungi. Materials and Methods. We evaluated multiple modifications of commonly-used DNA extraction procedures using standardized male and female urine samples, comparing resulting overall, fungal and bacterial DNA yields by quantitative PCR. After identifying protocol modifications that increased DNA yields (lyticase/lysozyme digestion, bead beating, boil/freeze cycles, proteinase K treatment, and carrier DNA use), all modifications were combined for systematic confirmation of optimal protocol conditions. This optimized protocol was tested against commercially available methodologies to compare overall and microbial DNA yields, community representation and diversity by next-generation sequencing (NGS). Results. Overall and fungal-specific DNA yields from standardized urine samples demonstrated that microbial abundances differed significantly among the eight methods used. Methodologies that included multiple disruption steps, including enzymatic, mechanical, and thermal disruption and proteinase digestion, particularly in combination with small volume processing and pooling steps, provided more comprehensive representation of the range of bacterial and fungal species. Concentration of larger volume urine specimens at low speed centrifugation proved highly effective, increasing resulting DNA levels and providing greater microbial representation and diversity. Conclusions. Alterations in the methodology of urine storage, preparation, and DNA processing improve microbial community profiling using culture-independent sequencing methods. Our optimized protocol for DNA extraction from urine samples provided improved fungal community representation. Use of this technique resulted in equivalent representation of the bacterial populations as well, making this a useful technique for the concurrent evaluation of bacterial and fungal populations by NGS.


2019 ◽  
Vol 25 (31) ◽  
pp. 3350-3357 ◽  
Author(s):  
Pooja Tripathi ◽  
Jyotsna Singh ◽  
Jonathan A. Lal ◽  
Vijay Tripathi

Background: With the outbreak of high throughput next-generation sequencing (NGS), the biological research of drug discovery has been directed towards the oncology and infectious disease therapeutic areas, with extensive use in biopharmaceutical development and vaccine production. Method: In this review, an effort was made to address the basic background of NGS technologies, potential applications of NGS in drug designing. Our purpose is also to provide a brief introduction of various Nextgeneration sequencing techniques. Discussions: The high-throughput methods execute Large-scale Unbiased Sequencing (LUS) which comprises of Massively Parallel Sequencing (MPS) or NGS technologies. The Next geneinvolved necessarily executes Largescale Unbiased Sequencing (LUS) which comprises of MPS or NGS technologies. These are related terms that describe a DNA sequencing technology which has revolutionized genomic research. Using NGS, an entire human genome can be sequenced within a single day. Conclusion: Analysis of NGS data unravels important clues in the quest for the treatment of various lifethreatening diseases and other related scientific problems related to human welfare.


PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139868 ◽  
Author(s):  
Mohan A. V. S. K. Katta ◽  
Aamir W. Khan ◽  
Dadakhalandar Doddamani ◽  
Mahendar Thudi ◽  
Rajeev K. Varshney

Plant Disease ◽  
2019 ◽  
Vol 103 (6) ◽  
pp. 1075-1083 ◽  
Author(s):  
Gustavo A. Díaz-Cruz ◽  
Charlotte M. Smith ◽  
Kiana F. Wiebe ◽  
Sachi M. Villanueva ◽  
Adam R. Klonowski ◽  
...  

Soybean (Glycine max) has become an important crop in Manitoba, Canada, with a 10-fold increase in dedicated acreage over the past decade. Given the rapid increase in production, scarce information about foliar diseases present in the province has been recorded. In order to describe the foliar pathogens affecting this legume, we harnessed next-generation sequencing (NGS) to carry out a comprehensive survey across Manitoba in 2016. Fields were sampled during the V2/3 (33 fields) and R6 (70 fields) growth stages, with at least three symptomatic leaves per field collected and subjected to RNA sequencing. We successfully detected several bacteria, fungi, and viruses known to infect soybean, including Pseudomonas savastanoi pv. glycinea, Septoria glycines, and Peronospora manshurica, as well as pathogens not previously identified in the province (e.g., Pseudomonas syringae pv. tabaci, Cercospora sojina, and Bean yellow mosaic virus). For some microorganisms, we were able to disentangle the different pathovars present and/or assemble their genome sequence. Since NGS generates data on the entire flora and fauna occupying a leaf sample, we also identified residual pathogens (i.e., pathogens of crops other than soybean) and multiple species of arthropod pests. Finally, the sequence information produced by NGS allowed for the development of polymerase chain reaction-based diagnostics for some of the most widespread and important pathogens. Although there are many benefits of using NGS for large-scale plant pathogen diagnoses, we also discuss some of the limitations of this technology.


2020 ◽  
Vol 79 (2) ◽  
pp. 105-113
Author(s):  
Abdul Bari Muneera Parveen ◽  
Divya Lakshmanan ◽  
Modhumita Ghosh Dasgupta

The advent of next-generation sequencing has facilitated large-scale discovery and mapping of genomic variants for high-throughput genotyping. Several research groups working in tree species are presently employing next generation sequencing (NGS) platforms for marker discovery, since it is a cost effective and time saving strategy. However, most trees lack a chromosome level genome map and validation of variants for downstream application becomes obligatory. The cost associated with identifying potential variants from the enormous amount of sequence data is a major limitation. In the present study, high resolution melting (HRM) analysis was optimized for rapid validation of single nucleotide polymorphisms (SNPs), insertions or deletions (InDels) and simple sequence repeats (SSRs) predicted from exome sequencing of parents and hybrids of Eucalyptus tereticornis Sm. ? Eucalyptus grandis Hill ex Maiden generated from controlled hybridization. The cost per data point was less than 0.5 USD, providing great flexibility in terms of cost and sensitivity, when compared to other validation methods. The sensitivity of this technology in variant detection can be extended to other applications including Bar-HRM for species authentication and TILLING for detection of mutants.


Sign in / Sign up

Export Citation Format

Share Document