scholarly journals Soil Erosion Impact Assessment using USLE/GIS Approaches to Identify High Erosion Risk Areas in the Lowland Agricultural Watershed of Blue Nile Basin, Ethiopia

2019 ◽  
Vol 8 (1) ◽  
pp. 120-129
Author(s):  
Kidist Tsegaye ◽  
Hailu Kendie Addis ◽  
Ebrahim Esa Hassen

Erosion map of a watershed offers a wealth of knowledge and can be crucial for implementing site-specific management interventions. Thus, watershed-based soil erosion assessment was conducted to recognize erosion hotspot areas, while aiming to roughly calculate the average annual soil loss in Genda-wuha watershed, with a total area of 154,548.5 ha located in the northwest lowland of Blue Nile basin Ethiopia using USLE/GIS approach. Sixteen years of rainfall data, 53 soil sample data, a 30m by 30m digital elevation model (DEM), a land-use/land-cover map, and support practice factor were used to determine high erosion risk areas. The USLE parameters were integrated and analyzed using a raster calculator in the ArcGIS platform to predict and map the mean annual soil loss of Genda-wuha watershed. The result showed that the annual soil loss of the watershed extends from none in the lower and middle part of the watershed to 75.36 Megagram (Mg) ha-1yr-1 in the steeper parts of the watershed with a mean annual soil loss of 7.9 Mg ha-1yr-1. Most of the soil erosion affected areas are spatially situated in the upper steep slope parts of Genda-wuha watershed, which could be as a result of an increased slope gradient and length in the specified location. However, the majority of the watershed (82.62%) was estimated to be low erosion rates varying from 0 to 5 Mg ha–1 yr–1 and these areas correspond primarily to nearly flat landscapes of the watershed.

2021 ◽  
Author(s):  
Wakjira Takala Dibaba ◽  
Dessalegn Geleta Ebsa

Abstract Land degradation caused by soil erosion has become the most serious problem in the Ethiopian highlands. Quantifying the spatial variations of soil loss with a strong evidence helps to prioritize the watersheds for the implementation of different management practices. The study was carried out in the Toba Watershed of the Upper Blue Nile Basin in Ethiopia. Its objective was to evaluate the rate of soil erosion and identify the hotspots with high risk of soil erosion for watershed management planning. Then, Soil and Water Assessment Tool (SWAT) was used to evaluate the effectiveness of best management practices (BMP) in reducing soil loss. The performance of SWAT in simulating streamflow and sediment yield was evaluated through sensitivity analysis, uncertainty, calibration and validation process. Statistically, the calibrated and validated sediment yields (SY) against the observed sediment data were reasonably accurate (R2 = 0.67, 0.65, NSE = 0.66, 0.64, PBIAS=-8.4%, 9.8% respectively). The annual SY in Toba watershed varies from 0.09 t ha− 1 yr− 1 to 44.8 t ha− 1 yr− 1 with an average SY of 22.7 t ha− 1 yr− 1. To prioritize the SY of the watershed, the annual severity of SY was divided into six classes: very low, low, moderate, high, very high and severe. The study also showed that SY in most watersheds (about 53.8%) were higher than the average. Cultivation on steep slopes leads to the highest SY, while forested areas have lower SY contribution. five management scenarios were evaluated using the Calibrated model. Seventeen sub-basins with SY exceeding the tolerable erosion of Ethiopia (t ha− 1 yr− 1) were considered for the analysis of the BMP scenario. The results show that reforestation combined with vegetative strips was the most effective for soil erosion control (87.8% reduction) followed by the combination of soil/stone bund and vegetative strips (83.7% reduction). Overall, the results of this study provided important data for watershed management and are very useful to ensure the sustainable management of land and natural resources at watershed level.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Dinesh Bhandari ◽  
Rajeev Joshi ◽  
Raju Raj Regmi ◽  
Nripesh Awasthi

Soil erosion is a major concern for the environment and natural resources leading to a serious threat to agricultural productivity and one of the major causes of land degradation in the mid-hills region of Nepal. An accurate assessment of soil erosion is needed to reduce the problem of soil loss in highly fragile mountainous areas. The present study aimed to assess spatial soil loss rate and identified risk areas and their perceived impact on agricultural productivity by using the Revised Morgan–Morgan–Finney (RMMF) model and social survey in the Rangun watershed of Dadeldhura district, Nepal. Soil erosion was assessed by using data on soil, digital elevation model, rainfall, land use, and land cover visually interpreted from multitemporal satellite images, and ILWIS 3.3 academic software was used to perform the model. A household questionnaire survey (n = 120) and focus group discussion (n = 2) in identified risk areas were carried out to understand the people’s perception towards soil erosion and its impact on agricultural productivity. The predicted average soil erosions from the forest, agriculture, and barren land were 2.7 t ha−1 yr−1, 53.73 t ha−1 yr−1, and 462.59 t ha−1 yr−1, respectively. The erosion risk area under very low to low, moderate to moderately high, and high to very high covers 92.32%, 4.96%, and 2.73%, respectively. It indicates that the rate of soil erosion was lower in forest areas, whereas it was higher in the barren land. The cropped area of the watershed has been reduced by 2.96 ha−1 yr−1, and productivity has been decreased by 0.238 t ha−1 yr−1. The impacts such as removal of topsoil (weighted mean = 4.19) and gully formation (weighted mean = 3.56) were the highest perceived factors causing productivity decline due to erosion. People perceived the impact of erosion in agricultural productivity differently ( ∗ significant at P ≤ 0.05 ). The study concluded that, comparatively, barren and agricultural lands seem more susceptible to erosion, so the long-term conservation and management investment in susceptible areas for restoration, protection, and socioeconomic support contribute significantly to land rehabilitation in the Rangun watershed.


2019 ◽  
Vol 648 ◽  
pp. 1462-1475 ◽  
Author(s):  
Kindiye Ebabu ◽  
Atsushi Tsunekawa ◽  
Nigussie Haregeweyn ◽  
Enyew Adgo ◽  
Derege Tsegaye Meshesha ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Tatek Belay ◽  
Daniel Ayalew Mengistu

Abstract Background Soil erosion is one of the major threats in the Ethiopian highlands. In this study, soil erosion in the Muga watershed of the Upper Blue Nile Basin (Abay) under historical and future climate and land use/land cover (LULC) change was assessed. Future LULC was predicted based on LULC map of 1985, 2002, and 2017. LULC maps of the historical periods were delineated from Landsat images, and future LULC was predicted using the CA–Markov chain model. Precipitation for the future period was projected from six regional circulation models. The RUSLE model was used to estimate the current and future soil erosion rate in Muga watershed. Results The average annual rate of soil erosion in the study area was increased from about 15 t ha−1 year−1 in 1985 to 19 t ha−1 year−1 in 2002, and 19.7 t ha−1 year−1 in 2017. Expansion of crop cultivation and loss of vegetation caused an increase in soil erosion. Unless proper measure is taken against the LULC changes, the rate of soil loss is expected to increase and reach about 20.7 t ha−1 year−1 in 2033. In the 2050s, soil loss is projected to increase by 9.6% and 11.3% under RCP4.5 and RCP8.5, respectively, compared with the baseline period. Thus, the soil loss rate is expected to increase under both scenarios due to the higher erosive power of the future intense rainfall. When both LULC and climate changes act together, the mean annual soil loss rate shows a rise of 13.2% and 15.7% in the future under RCP4.5 and RCP8.5, respectively, which is due to synergistic effects. Conclusions The results of this study can be useful for formulating proper land use planning and investments to mitigate the adverse effect of LULC on soil loss. Furthermore, climate change will exacerbate the existing soil erosion problem and would need for vigorous proper conservation policies and investments to mitigate the negative impacts of climate change on soil loss.


Energy Nexus ◽  
2022 ◽  
Vol 5 ◽  
pp. 100038
Author(s):  
Berhanu G. Sinshaw ◽  
Abreham M. Belete ◽  
Belachew M. Mekonen ◽  
Tesgaye G. Wubetu ◽  
Tegenu L. Anley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document