scholarly journals Counting D1-D5-P microstates in supergravity

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Daniel Mayerson ◽  
Masaki Shigemori

We quantize the D1-D5-P microstate geometries known as superstrata directly in supergravity. We use Rychkov's consistency condition [hep-th/0512053] which was derived for the D1-D5 system; for superstrata, this condition turns out to be strong enough to fix the symplectic form uniquely. For the (1,0,n) superstrata, we further confirm this quantization by a bona-fide explicit computation of the symplectic form using the semi-classical covariant quantization method in supergravity. We use the resulting quantizations to count the known supergravity superstrata states, finding agreement with previous countings that the number of these states grows parametrically smaller than those of the corresponding black hole.

2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.


1996 ◽  
Vol 05 (03) ◽  
pp. 227-250 ◽  
Author(s):  
MARCO CAVAGLIÀ ◽  
VITTORIO DE ALFARO ◽  
ALEXANDRE T. FILIPPOV

We quantize by the Dirac-Wheeler-DeWitt method the canonical formulation of the Schwarzschild black hole developed in a previous paper. We investigate the properties of the operators that generate rigid symmetries of the Hamiltonian, establish the form of the invariant measure under the rigid transformations, and determine the gauge fixed Hilbert space of states. We also prove that the reduced quantization method leads to the same Hilbert space for a suitable gauge fixing.


1996 ◽  
Vol 11 (17) ◽  
pp. 3097-3125 ◽  
Author(s):  
P.M. LAVROV ◽  
P. YU. MOSHIN ◽  
A.A. RESHETNYAK

Irreducible gauge theories in both the Lagrangian and Hamiltonian versions of the Sp (2)-covariant quantization method are studied. Solutions to generating equations are obtained in the form of expansions in power series of ghost and auxiliary variables up to the third order inclusive.


2008 ◽  
Vol 17 (06) ◽  
pp. 911-920 ◽  
Author(s):  
ADIL BELHAJ ◽  
PABLO DIAZ ◽  
ANTONIO SEGUI ◽  
MOHAMED NACIRI

We propose a new potential in brane inflation theory, which is given by the arctangent of the square of the scalar field. Then we perform an explicit computation for inflationary quantities. This potential has many nice features. In the small field approximation, it reproduces the chaotic and MSSM potentials. It allows one, in the large field approximation, to implement the attractor mechanism for bulk black holes where the geometry on the brane is de Sitter. In particular, we show, up to some assumptions, that the Friedman equation can be reinterpreted as a Schwarzschild black hole attractor equation for its mass parameter.


Nature ◽  
2020 ◽  
Vol 586 (7827) ◽  
pp. 18-19
Author(s):  
Davide Castelvecchi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document