scholarly journals The astrophysical odds of GW151216

2020 ◽  
Vol 498 (2) ◽  
pp. 1905-1910 ◽  
Author(s):  
Gregory Ashton ◽  
Eric Thrane

ABSTRACT The gravitational-wave candidate GW151216 is a proposed binary black hole event from the first observing run of the Advanced LIGO detectors. Not identified as a bona fide signal by the LIGO–Virgo collaboration, there is disagreement as to its authenticity, which is quantified by pastro, the probability that the event is astrophysical in origin. Previous estimates of pastro from different groups range from 0.18 to 0.71, making it unclear whether this event should be included in population analyses, which typically require pastro > 0.5. Whether GW151216 is an astrophysical signal or not has implications for the population properties of stellar-mass black holes and hence the evolution of massive stars. Using the astrophysical odds, a Bayesian method that uses the signal coherence between detectors and a parametrized model of non-astrophysical detector noise, we find that pastro = 0.03, suggesting that GW151216 is unlikely to be a genuine signal. We also analyse GW150914 (the first gravitational-wave detection) and GW151012 (initially considered to be an ambiguous detection) and find pastro values of 1 and 0.997, respectively. We argue that the astrophysical odds presented here improve upon traditional methods for distinguishing signals from noise.

2018 ◽  
Vol 610 ◽  
pp. A58
Author(s):  
J.-L. Atteia ◽  
J.-P. Dezalay ◽  
O. Godet ◽  
A. Klotz ◽  
D. Turpin ◽  
...  

Context. Gravitational wave interferometers have proven the existence of a new class of binary black hole (BBH) weighing tens of solar masses, and have provided the first reliable measurement of the rate of coalescing black holes (BHs) in the local Universe. Furthermore, long gamma-ray bursts (GRBs) detected with gamma-ray satellites are believed to be associated with the birth of stellar-mass BHs, providing a measure of the rate of these events across the history of the Universe, thanks to the measure of their cosmological redshift. These two types of sources, which are subject to different detection biases and involve BHs born in different environments with potentially different characteristics, provide complementary information on the birth rate of stellar BHs. Aims. We compare the birth rates of BHs found in BBH mergers and in long GRBs. Methods. We construct a simple model that makes reasonable assumptions on the history of GRB formation, and takes into account some major uncertainties, like the beaming angle of GRBs or the delay between the formation of BBHs and their coalescence. We use this model to evaluate the ratio of the number of stellar mass BHs formed in BBH mergers to those formed in GRBs. Results. We find that in our reference model the birth rate of stellar BHs in BBH mergers represents a significant fraction of the rate of long GRBs and that comparable birth rates are favored by models with moderate beaming angles. These numbers, however, do not consider subluminous GRBs, which may represent another population of sources associated with the birth of stellar mass BHs. We briefly discuss this result in view of our understanding of the progenitors of GRBs and BBH mergers, and we emphasize that this ratio, which will be better constrained in the coming years, can be directly compared with the prediction of stellar evolution models if a single model is used to produce GRBs and BBH mergers with the same assumptions.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Adrian Ka-Wai Chung ◽  
Mairi Sakellariadou

AbstractWe present a method to constrain the temperature of astrophysical black holes through detecting the inspiral phase of binary black hole coalescences. At sufficient separation, inspiraling black holes can be regarded as isolated objects, hence their temperature can still be defined. Due to their intrinsic radiation, inspiraling black holes lose part of their masses during the inspiral phase. As a result, coalescence speeds up, introducing a correction to the orbital phase. We show that this dephasing may allow us to constrain the temperature of inspiraling black holes through gravitational-wave detection. Using the binary black-hole coalescences of the first two observing runs of the Advanced LIGO and Virgo detectors, we constrain the temperature of parental black holes to be less than about $$ 10^9 $$ 10 9  K. Such a constraint corresponds to luminosity of about $$ 10^{-16} M_{\odot }~\mathrm{s}^{-1} $$ 10 - 16 M ⊙ s - 1 for a black hole of $$ 20 M_{\odot } $$ 20 M ⊙ , which is about 20 orders of magnitude below the peak luminosity of the corresponding gravitational-wave event, indicating no evidence for strong quantum-gravity effects through the detection of the inspiral phase.


2020 ◽  
Vol 498 (3) ◽  
pp. 4287-4294
Author(s):  
Jongsuk Hong ◽  
Abbas Askar ◽  
Mirek Giersz ◽  
Arkadiusz Hypki ◽  
Suk-Jin Yoon

ABSTRACT The dynamical formation of black hole binaries in globular clusters that merge due to gravitational waves occurs more frequently in higher stellar density. Meanwhile, the probability to form intermediate mass black holes (IMBHs) also increases with the density. To explore the impact of the formation and growth of IMBHs on the population of stellar mass black hole binaries from globular clusters, we analyse the existing large survey of Monte Carlo globular cluster simulation data (mocca-survey Database I). We show that the number of binary black hole mergers agrees with the prediction based on clusters’ initial properties when the IMBH mass is not massive enough or the IMBH seed forms at a later time. However, binary black hole formation and subsequent merger events are significantly reduced compared to the prediction when the present-day IMBH mass is more massive than ${\sim}10^4\, \rm M_{\odot }$ or the present-day IMBH mass exceeds about 1 per cent of cluster’s initial total mass. By examining the maximum black hole mass in the system at the moment of black hole binary escaping, we find that ∼90 per cent of the merging binary black holes escape before the formation and growth of the IMBH. Furthermore, large fraction of stellar mass black holes are merged into the IMBH or escape as single black holes from globular clusters in cases of massive IMBHs, which can lead to the significant underpopulation of binary black holes merging with gravitational waves by a factor of 2 depending on the clusters’ initial distributions.


2019 ◽  
Vol 490 (4) ◽  
pp. 5210-5216 ◽  
Author(s):  
Isobel M Romero-Shaw ◽  
Paul D Lasky ◽  
Eric Thrane

ABSTRACT Binary black holes are thought to form primarily via two channels: isolated evolution and dynamical formation. The component masses, spins, and eccentricity of a binary black hole system provide clues to its formation history. We focus on eccentricity, which can be a signature of dynamical formation. Employing the spin-aligned eccentric waveform model seobnre, we perform Bayesian inference to measure the eccentricity of binary black hole merger events in the first gravitational-wave transient catalogue of LIGO and Virgo. We find that all of these events are consistent with zero eccentricity. We set upper limits on eccentricity ranging from 0.02 to 0.05 with 90  per cent confidence at a reference frequency of $10\, {\rm Hz}$. These upper limits do not significantly constrain the fraction of LIGO–Virgo events formed dynamically in globular clusters, because only $\sim 5{{\ \rm per\ cent}}$ are expected to merge with measurable eccentricity. However, with the gravitational-wave transient catalogue set to expand dramatically over the coming months, it may soon be possible to significantly constrain the fraction of mergers taking place in globular clusters using eccentricity measurements.


Author(s):  
Sayak Datta ◽  
Sukanta Bose

AbstractWe study the quasi-normal modes (QNMs) of static, spherically symmetric black holes in f(R) theories. We show how these modes in theories with non-trivial f(R) are fundamentally different from those in general relativity. In the special case of $$f(R) = \alpha R^2$$f(R)=αR2 theories, it has been recently argued that iso-spectrality between scalar and vector modes breaks down. Here, we show that such a break down is quite general across all f(R) theories, as long as they satisfy $$f''(0)/(1+f''(0)) \ne 0$$f′′(0)/(1+f′′(0))≠0, where a prime denotes derivative of the function with respect to its argument. We specifically discuss the origin of the breaking of isospectrality. We also show that along with this breaking the QNMs receive a correction that arises when $$f''(0)/(1+f'(0)) \ne 0$$f′′(0)/(1+f′(0))≠0 owing to the inhomogeneous term that it introduces in the mode equation. We discuss how these differences affect the “ringdown” phase of binary black hole mergers and the possibility of constraining f(R) models with gravitational-wave observations. We also find that even though the iso-spectrality is broken in f(R) theories, in general, nevertheless in the corresponding scalar-tensor theories in the Einstein frame it is unbroken.


Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter analyzes formation mechanisms for supermassive black holes, their observable characteristics, and their interactions with their host galaxies and the wider Universe. A black hole is the end product of the complete gravitational collapse of a material object, such as a massive star. It is surrounded by a horizon from which even light cannot escape. Astrophysical black holes appear in two flavors: stellar-mass black holes that form when massive stars die, and the monstrous supermassive black holes that sit at the center of galaxies, reaching masses of up to ten billion Suns. The latter type is observed as active galactic nuclei (AGN), and the chapter introduces the quasar—a point-like (“quasi-stellar”) bright source at the center of a galaxy which serves as the most powerful type of AGN—in discussing the observable nature of supermassive black holes.


Entropy ◽  
2019 ◽  
Vol 21 (10) ◽  
pp. 1017
Author(s):  
Bogeun Gwak

We investigate the energy of the gravitational wave from a binary black hole merger by the coalescence of two Kerr black holes with an orbital angular momentum. The coalescence is constructed to be consistent with particle absorption in the limit in which the primary black hole is sufficiently large compared with the secondary black hole. In this limit, we analytically obtain an effective gravitational spin–orbit interaction dependent on the alignments of the angular momenta. Then, binary systems with various parameters including equal masses are numerically analyzed. According to the numerical analysis, the energy of the gravitational wave still depends on the effective interactions, as expected from the analytical form. In particular, we ensure that the final black hole obtains a large portion of its spin angular momentum from the orbital angular momentum of the initial binary black hole. To estimate the angular momentum released by the gravitational wave in the actual binary black hole, we apply our results to observations at the Laser Interferometer Gravitational-Wave Observatory: GW150914, GW151226, GW170104, GW170608 and GW170814.


2020 ◽  
Vol 495 (1) ◽  
pp. 536-543 ◽  
Author(s):  
Razieh Emami ◽  
Abraham Loeb

ABSTRACT We analyse triple systems composed of the supermassive black hole (SMBH) near the centre of M87 and a pair of black holes (BHs) with masses in the range of $10{-}10^3\, {\rm M}_{\odot }$. We consider the post Newtonian precession as well as the Kozai–Lidov interactions at the quadruple and octupole levels in modelling the evolution of binary black hole (BBH) under the influence of the SMBH. Kozai–Lidov oscillations enhance the gravitational wave (GW) signal in some portions of the parameter space. We identify frequency peaks and examine the detectability of GWs with LISA as well as future observatories such as μAres and DECIGO. We show examples in which GW signal can be observed with a few or all of these detectors. Multiwavelength GW spectroscopy holds the potential to discover stellar to intermediate mass BHs near the centre of M87. We estimate the rate, Γ, of collisions between the BBHs and fly-by stars at the centre of M87. Our calculation suggest $\Gamma \lt 10\, \rm {Gyr}^{-1}$ for a wide range of the mass and semimajor axes of the inner binary.


2020 ◽  
Vol 496 (1) ◽  
pp. 182-196 ◽  
Author(s):  
Chang Liu ◽  
Lijing Shao ◽  
Junjie Zhao ◽  
Yong Gao

ABSTRACT The Advanced LIGO and Virgo detectors opened a new era to study black holes (BHs) in our Universe. A population of stellar-mass binary black holes (BBHs) are discovered to be heavier than previously expected. These heavy BBHs provide us an opportunity to achieve multiband observation with ground-based and space-based gravitational-wave (GW) detectors. In this work, we use BBHs discovered by the LIGO/Virgo Collaboration as indubitable examples, and study in great detail the prospects for multiband observation with GW detectors in the near future. We apply the Fisher matrix to spinning, non-precessing inspiral-merger-ringdown waveforms, while taking the motion of space-based GW detectors fully into account. Our analysis shows that, detectors with decihertz sensitivity are expected to log stellar-mass BBH signals with very large signal-to-noise ratio and provide accurate parameter estimation, including the sky location and time to coalescence. Furthermore, the combination of multiple detectors will achieve unprecedented measurement of BBH properties. As an explicit example, we present the multiband sensitivity to the generic dipole radiation for BHs, which is vastly important for the equivalence principle in the foundation of gravitation, in particular for those theories that predict curvature-induced scalarization of BHs.


Sign in / Sign up

Export Citation Format

Share Document