scholarly journals Supercurrent-induced Majorana bound states in a planar geometry

2019 ◽  
Vol 7 (3) ◽  
Author(s):  
André Melo ◽  
Sebastian Rubbert ◽  
Anton Akhmerov

We propose a new setup for creating Majorana bound states in a two-dimensional electron gas Josephson junction. Our proposal relies exclusively on a supercurrent parallel to the junction as a mechanism of breaking time-reversal symmetry. We show that combined with spin-orbit coupling, supercurrents induce a Zeeman-like spin splitting. Further, we identify a new conserved quantity—charge-momentum parity—that prevents the opening of the topological gap by the supercurrent in a straight Josephson junction. We propose breaking this conservation law by adding a third superconductor, introducing a periodic potential, or making the junction zigzag-shaped. By comparing the topological phase diagrams and practical limitations of these systems we identify the zigzag-shaped junction as the most promising option.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Narayan Mohanta ◽  
Satoshi Okamoto ◽  
Elbio Dagotto

AbstractPlanar Josephson junctions provide a versatile platform, alternative to the nanowire-based geometry, for the generation of the Majorana bound states, due to the additional phase tunability of the topological superconductivity. The proximity induction of chiral magnetism and superconductivity in a two-dimensional electron gas showed remarkable promise to manipulate topological superconductivity. Here, we consider a Josephson junction involving a skyrmion crystal and show that the chiral magnetism of the skyrmions can create and control the Majorana bound states without the requirement of an intrinsic Rashba spin-orbit coupling. Interestingly, the Majorana bound states in our geometry are realized robustly at zero phase difference at the junction. The skyrmion radius, being externally tunable by a magnetic field or a magnetic anisotropy, brings a unique control feature for the Majorana bound states.


2021 ◽  
Author(s):  
Narayan Mohanta ◽  
Satoshi Okamoto ◽  
Elbio Dagotto

Abstract Planar Josephson junctions provide a versatile platform, alternative to the nanowire-based geometry, for the generation of the Majorana bound states, due to the additional phase tunability of the topological superconductivity. The proximity induction of chiral magnetism and superconductivity in a two-dimensional electron gas showed remarkable promises to manipulate topological superconductivity. Here, we consider a Josephson junction involving a skyrmion crystal and show that the chiral magnetism of the skyrmions can create and control the Majorana bound states without the requirement of an intrinsic Rashba spin-orbit coupling. Interestingly, the Majorana bound states in our geometry are realized robustly at zero phase difference at the junction. The skyrmion radius, being externally tunable by a magnetic field or a magnetic anisotropy, brings a unique control feature for the Majorana bound states.


2003 ◽  
Vol 02 (06) ◽  
pp. 461-468
Author(s):  
D. G. W. PARFITT ◽  
M. E. PORTNOI

The anyon exciton model, which describes an exciton against the background of an incompressible quantum liquid, is generalized to the case of an arbitrary number of anyons. Some mathematical aspects of this quantum-mechanical few-particle problem are considered and several exact solutions are obtained. The four-particle case is also considered in the classical limit in both planar and spherical geometries. Such a classical approach gives an adequate description of an anyon exciton at large separation between the valence hole and the two-dimensional electron gas. It is shown that in this limit in a planar geometry the anyon exciton is always energetically more favorable than a charged anyon ion. This indicates that the appearance of fractionally-charged anyon ions reported in recent numerical calculations is an artefact apparently caused by finite-size effects in a spherical geometry.


Sign in / Sign up

Export Citation Format

Share Document