scholarly journals The negativity contour: a quasi-local measure of entanglement for mixed states

2020 ◽  
Vol 8 (4) ◽  
Author(s):  
Jonah Kudler-Flam ◽  
Hassan Shapourian ◽  
Shinsei Ryu

In this paper, we study the entanglement structure of mixed states in quantum many-body systems using the negativity contour, a local measure of entanglement that determines which real-space degrees of freedom in a subregion are contributing to the logarithmic negativity and with what magnitude. We construct an explicit contour function for Gaussian states using the fermionic partial-transpose. We generalize this contour function to generic many-body systems using a natural combination of derivatives of the logarithmic negativity. Though the latter negativity contour function is not strictly positive for all quantum systems, it is simple to compute and produces reasonable and interesting results. In particular, it rigorously satisfies the positivity condition for all holographic states and those obeying the quasi-particle picture. We apply this formalism to quantum field theories with a Fermi surface, contrasting the entanglement structure of Fermi liquids and holographic (hyperscale violating) non-Fermi liquids. The analysis of non-Fermi liquids show anomalous temperature dependence of the negativity depending on the dynamical critical exponent. We further compute the negativity contour following a quantum quench and discuss how this may clarify certain aspects of thermalization.

1991 ◽  
Vol 05 (20) ◽  
pp. 3235-3253 ◽  
Author(s):  
V.I. YUKALOV

A new method is developed to define pure states for many-body systems with spontaneous symmetry breaking. The advantage of the method is in the use of solely the standard thermodynamic limit, as compared to the Bogolubov method of infinitesimal external sources which invokes two limiting procedures: the standard thermodynamic limit and the elimination of external sources. The general conditions for obtaining pure states are formulated. When these conditions do not hold mixed states appear. The method is illustrated by calculations for two simple models.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Benjamin Geiger ◽  
Juan Diego Urbina ◽  
Klaus Richter
Keyword(s):  

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Norifumi Matsumoto ◽  
Kohei Kawabata ◽  
Yuto Ashida ◽  
Shunsuke Furukawa ◽  
Masahito Ueda

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Donald Marolf ◽  
Shannon Wang ◽  
Zhencheng Wang

Abstract Recent results suggest that new corrections to holographic entanglement entropy should arise near phase transitions of the associated Ryu-Takayanagi (RT) surface. We study such corrections by decomposing the bulk state into fixed-area states and conjecturing that a certain ‘diagonal approximation’ will hold. In terms of the bulk Newton constant G, this yields a correction of order O(G−1/2) near such transitions, which is in particular larger than generic corrections from the entanglement of bulk quantum fields. However, the correction becomes exponentially suppressed away from the transition. The net effect is to make the entanglement a smooth function of all parameters, turning the RT ‘phase transition’ into a crossover already at this level of analysis.We illustrate this effect with explicit calculations (again assuming our diagonal approximation) for boundary regions given by a pair of disconnected intervals on the boundary of the AdS3 vacuum and for a single interval on the boundary of the BTZ black hole. In a natural large-volume limit where our diagonal approximation clearly holds, this second example verifies that our results agree with general predictions made by Murthy and Srednicki in the context of chaotic many-body systems. As a further check on our conjectured diagonal approximation, we show that it also reproduces the O(G−1/2) correction found Penington et al. for an analogous quantum RT transition. Our explicit computations also illustrate the cutoff-dependence of fluctuations in RT-areas.


Sign in / Sign up

Export Citation Format

Share Document