scholarly journals Probing phase transitions of holographic entanglement entropy with fixed area states

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Donald Marolf ◽  
Shannon Wang ◽  
Zhencheng Wang

Abstract Recent results suggest that new corrections to holographic entanglement entropy should arise near phase transitions of the associated Ryu-Takayanagi (RT) surface. We study such corrections by decomposing the bulk state into fixed-area states and conjecturing that a certain ‘diagonal approximation’ will hold. In terms of the bulk Newton constant G, this yields a correction of order O(G−1/2) near such transitions, which is in particular larger than generic corrections from the entanglement of bulk quantum fields. However, the correction becomes exponentially suppressed away from the transition. The net effect is to make the entanglement a smooth function of all parameters, turning the RT ‘phase transition’ into a crossover already at this level of analysis.We illustrate this effect with explicit calculations (again assuming our diagonal approximation) for boundary regions given by a pair of disconnected intervals on the boundary of the AdS3 vacuum and for a single interval on the boundary of the BTZ black hole. In a natural large-volume limit where our diagonal approximation clearly holds, this second example verifies that our results agree with general predictions made by Murthy and Srednicki in the context of chaotic many-body systems. As a further check on our conjectured diagonal approximation, we show that it also reproduces the O(G−1/2) correction found Penington et al. for an analogous quantum RT transition. Our explicit computations also illustrate the cutoff-dependence of fluctuations in RT-areas.

Universe ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 33 ◽  
Author(s):  
Liron Levy ◽  
Moshe Goldstein

In recent years, tools from quantum information theory have become indispensable in characterizing many-body systems. In this work, we employ measures of entanglement to study the interplay between disorder and the topological phase in 1D systems of the Kitaev type, which can host Majorana end modes at their edges. We find that the entanglement entropy may actually increase as a result of disorder, and identify the origin of this behavior in the appearance of an infinite-disorder critical point. We also employ the entanglement spectrum to accurately determine the phase diagram of the system, and find that disorder may enhance the topological phase, and lead to the appearance of Majorana zero modes in systems whose clean version is trivial.


2008 ◽  
Vol 22 (06) ◽  
pp. 561-581 ◽  
Author(s):  
SHI-LIANG ZHU

Quantum phase transition is one of the main interests in the field of condensed matter physics, while geometric phase is a fundamental concept and has attracted considerable interest in the field of quantum mechanics. However, no relevant relation was recognized before recent work. In this paper, we present a review of the connection recently established between these two interesting fields: investigations in the geometric phase of the many-body systems have revealed the so-called "criticality of geometric phase", in which the geometric phase associated with the many-body ground state exhibits universality, or scaling behavior in the vicinity of the critical point. In addition, we address the recent advances on the connection of some other geometric quantities and quantum phase transitions. The closed relation recently recognized between quantum phase transitions and some of the geometric quantities may open attractive avenues and fruitful dialogue between different scientific communities.


2020 ◽  
Vol 384 (16) ◽  
pp. 126333
Author(s):  
Zhengan Wang ◽  
Zheng-Hang Sun ◽  
Yu Zeng ◽  
Haifeng Lang ◽  
Qiantan Hong ◽  
...  

2012 ◽  
Vol 26 (27n28) ◽  
pp. 1243009 ◽  
Author(s):  
VLADISLAV POPKOV ◽  
MARIO SALERNO

In this paper we discuss the properties of the reduced density matrix of quantum many body systems with permutational symmetry and present basic quantification of the entanglement in terms of the von Neumann (VNE), Renyi and Tsallis entropies. In particular, we show, on the specific example of the spin 1/2 Heisenberg model, how the RDM acquires a block diagonal form with respect to the quantum number k fixing the polarization in the subsystem conservation of Sz and with respect to the irreducible representations of the Sn group. Analytical expression for the RDM elements and for the RDM spectrum are derived for states of arbitrary permutational symmetry and for arbitrary polarizations. The temperature dependence and scaling of the VNE across a finite temperature phase transition is discussed and the RDM moments and the Rényi and Tsallis entropies calculated both for symmetric ground states of the Heisenberg chain and for maximally mixed states.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650067 ◽  
Author(s):  
Seyed Ali Hosseini Mansoori ◽  
Behrouz Mirza ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this paper, we investigate the entanglement entropy for the generalized charged BTZ black hole through the AdS3/CFT2 correspondence. Using the holographic description of the entanglement entropy for the strip-subsystem in boundary CFT2, we will find the first law-like relation between the variation of holographic entanglement entropy and the variation of energy of the subsystem in terms of the mass and the electric charge up to the second-order. We also obtain appropriate counterterms to renormalize the energy tensor associated with the bulk on-shell actions.


Sign in / Sign up

Export Citation Format

Share Document