scholarly journals Dipolar condensed atomic mixtures and miscibility under rotation

Author(s):  
Lauro Tomio ◽  
Ramavarmaraja Kishor Kumar ◽  
Arnaldo Gammal

By considering symmetric- and asymmetric-dipolar coupled mixtures (with dysprosium and erbium isotopes), we report a study on relevant anisotropic effects, related to spatial separation and miscibility, due to dipole-dipole interactions (DDIs) in rotating binary dipolar Bose-Einstein condensates. The binary mixtures are kept in strong pancake-like traps, with repulsive two-body interactions modeled by an effective two-dimensional (2D) coupled Gross-Pitaevskii equation. The DDI are tuned from repulsive to attractive by varying the dipole polarization angle. A clear spatial separation is verified in the densities for attractive DDIs, being angular for symmetric mixtures and radial for asymmetric ones. Also relevant is the mass-imbalance sensibility observed by the vortex-patterns in symmetric- and asymmetric-dipolar mixtures. In an extension of this study, here we show how the rotational properties and spatial separation of these dipolar mixture are affected by a quartic term added to the harmonic trap of one of the components.

2010 ◽  
Vol 81 (6) ◽  
Author(s):  
Lei Wu ◽  
Lu Li ◽  
Jie-Fang Zhang ◽  
Dumitru Mihalache ◽  
Boris A. Malomed ◽  
...  

2009 ◽  
Vol 87 (9) ◽  
pp. 1013-1019 ◽  
Author(s):  
Enikö J.M. Madarassy

We suggest a method to create quantum turbulence (QT) in a trapped atomic Bose–Einstein condensate (BEC). By replacing in the upper half of our box the wave function, Ψ, with its complex conjugate, Ψ*, new negative vortices are introduced into the system. The simulations are performed by solving the two-dimensional Gross–Pitaevskii equation (2D GPE). We study the successive dynamics of the wave function by monitoring the evolution of density and phase profile.


2019 ◽  
Vol 33 (10) ◽  
pp. 1950080 ◽  
Author(s):  
Qiang Zhao

We consider the stationary state properties of pseudo-spin-1/2 rotating dipolar Bose–Einstein condensates (BECs) by numerical simulations of the Gross–Pitaevskii equation. Different vortex structures in each component are studied, depending on the competition between the dipole–dipole interactions (DDIs) and rotational. We also investigate the differences of vortex number in the two components, showing that anisotropic nature of DDIs plays a significant role in vortices formation process.


2002 ◽  
Vol 12 (04) ◽  
pp. 739-764 ◽  
Author(s):  
SHU-MING CHANG ◽  
WEN-WEI LIN ◽  
TAI-CHIA LIN

We derive the asymptotic motion equations of vortices for the time-dependent Gross–Pitaevskii equation with a harmonic trap potential. The asymptotic motion equations form a system of ordinary differential equations which can be regarded as a perturbation of the standard Kirchhoff problem. From the numerical simulation on the asymptotic motion equations, we observe that the bounded and collisionless trajectories of three vortices form chaotic, quasi 2- or quasi 3-periodic orbits. Furthermore, a new phenomenon of 1:1-topological synchronization is observed in the chaotic trajectories of two vortices.


Sign in / Sign up

Export Citation Format

Share Document