trap potential
Recently Published Documents


TOTAL DOCUMENTS

42
(FIVE YEARS 6)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Christopher Gravestock ◽  
Alex Bromhead ◽  
Mike Simmons ◽  
Frans Van Buchem ◽  
Roger Davies

Abstract The Mesozoic stratigraphy of the Middle East is endowed with multiple world-class, economically significant petroleum systems. Since the first discovery of a major oilfield in an anticline structure in 1908 (Masjed-e-Suleyman, Iran), exploration and production in the Middle East has been largely focussed on relatively low-risk, large structural traps. However, across the Arabian Plate, unexplored structural traps at similar scales are becoming scarce. Therefore, in this mature petroleum province, attention must now focus on identifying the presence of subtle stratigraphic traps, especially within the hydrocarbon-rich Mesozoic stratigraphy. In order to locate and evaluate subtle stratigraphic traps, we have applied sequence stratigraphic principles across the Mesozoic strata of the Arabian Plate. This approach provides a regional, robust age-based framework which reduces lithostratigraphic uncertainty across international boundaries and offers predictive capabilities in the identification and extent of stratigraphic plays. Herein, we focus on three intervals of Mesozoic stratigraphy, namely Triassic, Middle-Late Jurassic and middle Cretaceous strata, in which regional sequence stratigraphic based correlations have identified stratigraphic trap potential. Each of these stratigraphic intervals are associated with the following stratigraphic traps:Triassic: Sub-crop traps associated with a base Jurassic regional unconformity and intra-Triassic unconformities. Onlap geometries associated with differential topography on the Arabian Plate.Middle-Late Jurassic: Pure stratigraphic trap geometries associated with basin margin progradation and pinch-out plays either side of the Rimthan Arch related to late Oxfordian/early Kimmeridgian sea-level fall.Middle Cretaceous: Sub-crop potential beneath the regional mid-Turonian unconformity, basin margin progradation and stratigraphic pinch-out geometries associated with onlap onto basin margins. This regional sequence stratigraphic approach highlights the remaining exploration and production opportunities within these hydrocarbon-rich stratigraphic intervals.


2020 ◽  
Vol 22 (5) ◽  
pp. 053024
Author(s):  
Christopher M Seck ◽  
Adam M Meier ◽  
J True Merrill ◽  
Harley T Hayden ◽  
Brian C Sawyer ◽  
...  

2020 ◽  
Vol 34 (09) ◽  
pp. 2050073
Author(s):  
Rei Hatsuda ◽  
Emiko Arahata

Motivated by recent developments in experimental studies of Bose–Fermi mixtures, we investigate monopole oscillation dynamics of Bose–Fermi mixtures in a three-dimensional (3D) optical lattice and an external isotropic harmonic trap potential. We use dynamical Gutzwiller approximation and calculate time dependence of the average spatial extent of particles in a coexisting phase where superfluid bosons and metal fermions coexist. With the trap potential, the bosons concentrate at and around the center of the potential and the fermions surround the bosons. They begin to demonstrate monopole oscillations when the trap potentials are suddenly changed to the ones with smaller curvature. In particular, the correlation between the oscillations of the bosons and fermions is different depending on the condition of the initial confinement. We also show the case where only one of the two trap potentials is changed.


2020 ◽  
Vol 29 (1) ◽  
pp. 010307
Author(s):  
Ai-Xia Zhang ◽  
Ying Zhang ◽  
Yan-Fang Jiang ◽  
Zi-Fa Yu ◽  
Li-Xia Cai ◽  
...  

Langmuir ◽  
2019 ◽  
Vol 35 (48) ◽  
pp. 15759-15768 ◽  
Author(s):  
Mohit Singh ◽  
Neha Gawande ◽  
Y. S. Mayya ◽  
Rochish Thaokar

2018 ◽  
Vol 32 (09) ◽  
pp. 1850021
Author(s):  
Wei Wang ◽  
Jinbin Li

Using Crank–Nicolson method, we calculate ground state wave functions of two-component dipolar Bose–Einstein condensates (BECs) and show that, due to dipole–dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.


2017 ◽  
Vol 5 (4) ◽  
pp. T563-T578
Author(s):  
Stanley Rich Wharton

The Rimthan Arch, situated between the Arabian carbonate platform and the Gotnia intrashelf basin, represents a world class hydrocarbon province in Saudi Arabia. Middle to Upper Jurassic shallow-water depositional sequences are associated with productive hydrocarbon fields in which challenges exist in defining exploration targets, mainly stratigraphic trap plays. An attempt is made to investigate the basin depositional architecture on the flank of the Arch and also to model the stratigraphic trap potential of the youngest Arab third-order sequence. The basin architecture, stratal geometries, and impact of tectonics are explored using 3D seismic and well data. Seismic chronostratigraphy, seismic stratigraphy, seismic attribute, and log-based reservoir heterogeneity techniques are applied as an integrated approach to interpret the sequences from basin to reservoir scale. The study identifies two second-order sequences, SEQ 1 and SEQ 2, to frame a 3D geologic model and to examine basin development through time. Results derived from the integrated study indicate that although initial basin subsidence began later in SEQ 1 north of the Arch, it increased appreciably during SEQ 2. The Dhruma J20 maximum flooding surface, Lower Fadhili, and Hanifa provide clues in tracking major basin changes. Seismic stratigraphy applications highlight reflection terminations and prograding stratal geometries throughout the stratigraphic section to demonstrate tectonoeustatic influences. Tectonics impact SEQ 2 more intensely than SEQ 1 and may influence the migration of hydrocarbons across juxtaposed lithologies. A complex association between shallow marine tidal and ramp carbonates, and deeper basin halite beds, is linked to the subsiding Gotnia Basin. Log-facies analysis of the Arab third-order sequence demonstrates reservoir and seal trends, including the stratigraphic entrapment potential along a carbonate ramp profile. Seismic attributes support reservoir-depositional trends and salt-bed geometries. The integrated approach provides a targeted workflow to investigate the complex depositional systems and their stratigraphic trapping potential on the Arch.


Sign in / Sign up

Export Citation Format

Share Document