scholarly journals MDM2–MDM4 molecular interaction investigated by atomic force spectroscopy and surface plasmon resonance

2016 ◽  
Vol Volume 11 ◽  
pp. 4221-4229 ◽  
Author(s):  
Salvatore Cannistraro ◽  
Ilaria Moscetti ◽  
Emanuela Teveroni ◽  
Fabiola Moretti ◽  
Anna Rita Bizzarri
2014 ◽  
Vol 1840 (6) ◽  
pp. 1958-1964 ◽  
Author(s):  
Simona Santini ◽  
Silvia Di Agostino ◽  
Emilia Coppari ◽  
Anna Rita Bizzarri ◽  
Giovanni Blandino ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Duygu Çimen ◽  
Nilay Bereli ◽  
Adil Denizli

In this study, we designed a simple, rapid, sensitive and selective surface plasmon resonance (SPR) sensor for detection of L-phenylalaine by utilizing molecular imprinting technology. l-phenylalanine imprinted and non-imprinted poly(2-hydroxyethyl methacrylate-methacryloyl-l-phenylalanine) polymeric films were synthesized onto SPR chip surfaces using ultraviolet polymerization. l-phenyalanine imprinted and non-imprinted SPR sensors were characterized by using contact angle, atomic force microscopy and ellipsometry. After characterization studies, kinetic studies were carried out in the concentration range of 5.0–400.0 μM. The limit of detection and quantification were obtained as 0.0085 and 0.0285 μM, respectively. The response time for the test including equilibration, adsorption and desorption was approximately 9 min. The selectivity studies of the l-phenylalanine imprinted SPR sensor was performed in the presence of d-phenylalanine and l-tryptophan. Validation studies were carried out via enzyme-linked immunosorbent analysis technique in order to demonstrate the applicability and superiority of the l-phenylalanine imprinted SPR sensor.


The Analyst ◽  
2000 ◽  
Vol 125 (2) ◽  
pp. 245-250 ◽  
Author(s):  
Molly M. Stevens ◽  
Stephanie Allen ◽  
Martyn C. Davies ◽  
Clive J. Roberts ◽  
Saul J. B. Tendler ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2348 ◽  
Author(s):  
Katrin Niegelhell ◽  
Thomas Ganner ◽  
Harald Plank ◽  
Evelyn Jantscher-Krenn ◽  
Stefan Spirk

Lectins are a diverse class of carbohydrate binding proteins with pivotal roles in cell communication and signaling in many (patho)physiologic processes in the human body, making them promising targets in drug development, for instance, in cancer or infectious diseases. Other applications of lectins employ their ability to recognize specific glycan epitopes in biosensors and glycan microarrays. While a lot of research has focused on lectin interaction with specific carbohydrates, the interaction potential of lectins with different types of surfaces has not been addressed extensively. Here, we screen the interaction of two specific plant lectins, Concanavalin A and Ulex Europaeus Agglutinin-I with different nanoscopic thin films. As a control, the same experiments were performed with Bovine Serum Albumin, a widely used marker for non-specific protein adsorption. In order to test the preferred type of interaction during adsorption, hydrophobic, hydrophilic and charged polymer films were explored, such as polystyrene, cellulose, N,-N,-N-trimethylchitosan chloride and gold, and characterized in terms of wettability, surface free energy, zeta potential and morphology. Atomic force microscopy images of surfaces after protein adsorption correlated very well with the observed mass of adsorbed protein. Surface plasmon resonance spectroscopy studies revealed low adsorbed amounts and slow kinetics for all of the investigated proteins for hydrophilic surfaces, making those resistant to non-specific interactions. As a consequence, they may serve as favorable supports for biosensors, since the use of blocking agents is not necessary.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1497
Author(s):  
Nurul Illya Muhamad Fauzi ◽  
Yap Wing Fen ◽  
Nur Alia Sheh Omar ◽  
Silvan Saleviter ◽  
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal ◽  
...  

In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites thin film has been described. Its properties were characterized using Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis). FTIR confirmed the existence of Fe–O bond, C–N bond, C–C bond, C–O bond, O=C=O bond and O–H bond in Cs/Fe2O3 thin film. The surface morphology of the thin film indicated the relatively smooth and homogenous thin film, and also confirmed the interaction of Fe2O3 with the chitosan. Next, the UV-Vis result showed high absorbance value with an optical band gap of 4.013 eV. The incorporation of this Cs/Fe2O3 thin film with an optical-based method, i.e., surface plasmon resonance spectroscopy showed positive response where mercury ion (Hg2+) can be detected down to 0.01 ppm (49.9 nM). These results validate the potential of Cs/Fe2O3 thin film for optical sensing applications in Hg2+ detection.


2017 ◽  
Vol 10 (02) ◽  
pp. 1650040 ◽  
Author(s):  
Tao Ma ◽  
Xiaoxia Chen ◽  
Qing Peng ◽  
Pengfei Zhang ◽  
Yonghong He

Surface functionalization of sensor chip for probe immobilization is crucial for the biosensing applications of surface plasmon resonance (SPR) sensors. In this paper, we report a method circulating the dopamine aqueous solution to coat polydopamine film on sensing surface for surface functionalization of SPR chip. The polydopamine film with available thickness can be easily prepared by controlling the circulation time and the biorecognition elements can be immobilized on the polydopamine film for specific molecular interaction analysis. These operations are all performed under flow condition in the fluidic system, and have the advantages of easy implementation, less time consuming, and low cost, because the reagents and devices used in the operations are routinely applied in most laboratories. In this study, the specific absorption between the protein A probe immobilized on the sensing surface and human immunoglobulin G in the buffer is monitored based on this surface functionalization strategy to demonstrated its feasibility for SPR biosensing applications.


Sign in / Sign up

Export Citation Format

Share Document