scholarly journals Poloxamer-based binary hydrogels for delivering tramadol hydrochloride: sol-gel transition studies, dissolution-release kinetics, in vitro toxicity, and pharmacological evaluation

2015 ◽  
pp. 2391 ◽  
Author(s):  
Daniele de Araújo ◽  
Ana Claudia Mendonça dos Santos ◽  
Alessandra Cristina Santos Akkari ◽  
Iasmin Rosanne Silva Ferreira ◽  
Monica Páscoli ◽  
...  
2013 ◽  
Vol 647 ◽  
pp. 71-79 ◽  
Author(s):  
Guo Qiang Jiang ◽  
Yu Jie Wang ◽  
Fu Xin Ding

Long-term drug delivery based on the injectable thermosensitive hydrogel is of great advantage to the administration of naltrexone, but the constant release is hard to reach due to the sol-gel transition and the high water content of the hydrogel. The aim of the present study is to develop an injectable implant delivery system by the incorporation of microspheres into thermosensitive hydrogel for the long-term constant release of naltrexone. Naltrexone was loaded in PLGA microsphere dispersed in the methylcellulose based thermosensitive sol, which formed the hydrogel containing the naltrexone-loaded microspheres at the body temperature. The presence of microsphere in the hydrogel delayed the sol-gel transition slightly but enhanced the mechanical strength of the hydrogel significantly. The microspheres degradation in water diffusion dominated phase was decelerated when they were embed in the hydrogel. The in vitro naltrexone release from the microsphere/hydrogel system showed an over 60 days constant release with no significant burst release, and the drug release rate was in proportion to the microsphere concentration in the hydrogel.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Annachiara Scalzone ◽  
Ana M. Ferreira ◽  
Chiara Tonda-Turo ◽  
Gianluca Ciardelli ◽  
Kenny Dalgarno ◽  
...  

Abstract Articular cartilage (AC) lacks the ability to self-repair and cell-based approaches, primarily based on using chondrocytes and mesenchymal stem cells (MSCs), are emerging as effective technology to restore cartilage functionality, because cells synergic functionality may support the maintenance of chondrogenic phenotype and promote extracellular matrix regeneration. This work aims to develop a more physiologically representative co-culture system to investigate the influence of MSCs on the activity of chondrocytes. A thermo-sensitive chitosan-based hydrogel, ionically crosslinked with β–glycerophosphate, is optimised to obtain sol/gel transition at physiological conditions within 5 minutes, high porosity with pores diameter <30 µm, and in vitro mechanical integrity with compressive and equilibrium Young’s moduli of 37 kPa and 17 kPa, respectively. Live/dead staining showed that after 1 and 3 days in culture, the encapsulated MSCs into the hydrogels are viable and characterised by round-like morphology. Furthermore chondrocyte spheroids, seeded on top of gels that contained either MSCs or no cells, show that the encapsulated MSCs stimulate chondrocyte activity within a gel co-culture, both in terms of maintaining the coherence of chondrocyte spheroids, leading to a larger quantity of CD44 (by immunofluorescence) and a higher production of collagen and glycosaminoglycans (by histology) compared with the mono-culture.


2018 ◽  
Vol 42 (12) ◽  
pp. 10406-10413 ◽  
Author(s):  
Srikala Pangannaya ◽  
Makesh Mohan ◽  
Darshak R. Trivedi

The sol–gel transition properties of receptor R1 aiding the selective detection of fluoride ions.


1994 ◽  
Vol 91 ◽  
pp. 901-908 ◽  
Author(s):  
H Zanni ◽  
P Nieto ◽  
L Fernandez ◽  
R Couty ◽  
P Barret ◽  
...  

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 36
Author(s):  
Emanuele Mauri ◽  
Sara Maria Giannitelli ◽  
Marcella Trombetta ◽  
Alberto Rainer

Nanogels represent an innovative platform for tunable drug release and targeted therapy in several biomedical applications, ranging from cancer to neurological disorders. The design of these nanocarriers is a pivotal topic investigated by the researchers over the years, with the aim to optimize the procedures and provide advanced nanomaterials. Chemical reactions, physical interactions and the developments of engineered devices are the three main areas explored to overcome the shortcomings of the traditional nanofabrication approaches. This review proposes a focus on the current techniques used in nanogel design, highlighting the upgrades in physico-chemical methodologies, microfluidics and 3D printing. Polymers and biomolecules can be combined to produce ad hoc nanonetworks according to the final curative aims, preserving the criteria of biocompatibility and biodegradability. Controlled polymerization, interfacial reactions, sol-gel transition, manipulation of the fluids at the nanoscale, lab-on-a-chip technology and 3D printing are the leading strategies to lean on in the next future and offer new solutions to the critical healthcare scenarios.


Langmuir ◽  
2021 ◽  
Author(s):  
Lucas S. Ribeiro ◽  
Renata L. Sala ◽  
Leticia A. O. de Jesus ◽  
Sandra A. Cruz ◽  
Emerson R. Camargo

Sign in / Sign up

Export Citation Format

Share Document