scholarly journals MIROC4h^|^mdash;A New High-Resolution Atmosphere-Ocean Coupled General Circulation Model

2012 ◽  
Vol 90 (3) ◽  
pp. 325-359 ◽  
Author(s):  
Takashi T. SAKAMOTO ◽  
Yoshiki KOMURO ◽  
Teruyuki NISHIMURA ◽  
Masayoshi ISHII ◽  
Hiroaki TATEBE ◽  
...  
2011 ◽  
Vol 24 (16) ◽  
pp. 4368-4384 ◽  
Author(s):  
Enrico Scoccimarro ◽  
Silvio Gualdi ◽  
Alessio Bellucci ◽  
Antonella Sanna ◽  
Pier Giuseppe Fogli ◽  
...  

Abstract In this paper the interplay between tropical cyclones (TCs) and the Northern Hemispheric ocean heat transport (OHT) is investigated. In particular, results from a numerical simulation of the twentieth-century and twenty-first-century climates, following the Intergovernmental Panel on Climate Change (IPCC) twentieth-century run (20C3M) and A1B scenario protocols, respectively, have been analyzed. The numerical simulations have been performed using a state-of-the-art global atmosphere–ocean–sea ice coupled general circulation model (CGCM) with relatively high-resolution (T159) in the atmosphere. The CGCM skill in reproducing a realistic TC climatology has been assessed by comparing the model results from the simulation of the twentieth century with available observations. The model simulates tropical cyclone–like vortices with many features similar to the observed TCs. Specifically, the simulated TCs exhibit realistic structure, geographical distribution, and interannual variability, indicating that the model is able to capture the basic mechanisms linking the TC activity with the large-scale circulation. The cooling of the surface ocean observed in correspondence of the TCs is well simulated by the model. TC activity is shown to significantly increase the poleward OHT out of the tropics and decrease the poleward OHT from the deep tropics on short time scales. This effect, investigated by looking at the 100 most intense Northern Hemisphere TCs, is strongly correlated with the TC-induced momentum flux at the ocean surface, where the winds associated with the TCs significantly weaken (strengthen) the trade winds in the 5°–18°N (18°–30°N) latitude belt. However, the induced perturbation does not impact the yearly averaged OHT. The frequency and intensity of the TCs appear to be substantially stationary through the entire 1950–2069 simulated period, as does the effect of the TCs on the OHT.


2017 ◽  
Vol 50 (7-8) ◽  
pp. 2537-2552 ◽  
Author(s):  
Mark S. Williamson ◽  
Mat Collins ◽  
Sybren S. Drijfhout ◽  
Ron Kahana ◽  
Jennifer V. Mecking ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document