scholarly journals Study on Diurnal Sea Surface Warming and a Local Atmospheric Circulation over Mutsu Bay

2006 ◽  
Vol 84 (4) ◽  
pp. 725-744 ◽  
Author(s):  
Yoshimi KAWAI ◽  
Kiyotoshi OTSUKA ◽  
Hiroshi KAWAMURA
2019 ◽  
Vol 175 ◽  
pp. 68-80 ◽  
Author(s):  
Jae-Hong Moon ◽  
Taekyun Kim ◽  
Young Baek Son ◽  
Ji-Seok Hong ◽  
Joon-Ho Lee ◽  
...  

2014 ◽  
Vol 27 (24) ◽  
pp. 9323-9336 ◽  
Author(s):  
Paul W. Staten ◽  
Thomas Reichler ◽  
Jian Lu

Abstract Tropospheric circulation shifts have strong potential to impact surface climate. However, the magnitude of these shifts in a changing climate and the attending regional hydrological changes are difficult to project. Part of this difficulty arises from the lack of understanding of the physical mechanisms behind the circulation shifts themselves. To better delineate circulation shifts and their respective causes the circulation response is decomposed into 1) the “direct” response to radiative forcings themselves and 2) the “indirect” response to changing sea surface temperatures. Using ensembles of 90-day climate model simulations with immediate switch-on forcings, including perturbed greenhouse gas concentrations, stratospheric ozone concentrations, and sea surface temperatures, this paper documents the direct and indirect transient responses of the zonal-mean general circulation, and investigates the roles of previously proposed mechanisms in shifting the midlatitude jet. It is found that both the direct and indirect wind responses often begin in the lower stratosphere. Changes in midlatitude eddies are ubiquitous and synchronous with the midlatitude zonal wind response. Shifts in the critical latitude of wave absorption on either flank of the jet are not indicted as primary factors for the poleward-shifting jet, although some evidence for increasing equatorward wave reflection over the Southern Hemisphere in response to sea surface warming is seen. Mechanisms for the Northern Hemisphere jet shift are less clear.


Sign in / Sign up

Export Citation Format

Share Document