scholarly journals The Relationship of Sea Surface Temperature and Water Vapor Amount to Convection over the Western Tropical Pacific Revealed from Split Window Measurements

1990 ◽  
Vol 68 (5) ◽  
pp. 589-606 ◽  
Author(s):  
Toshiro Inoue
2003 ◽  
Vol 16 (10) ◽  
pp. 1583-1592 ◽  
Author(s):  
A. J. Miller ◽  
S. Zhou ◽  
S-K. Yang

Abstract While several mechanisms have been suggested to account for the association of the Arctic and Antarctic Oscillations (AO/AAO) with atmospheric parameters, this paper focuses on the relationship with the atmospheric outgoing longwave radiation (OLR). The main objective of this paper is to demonstrate through AO/AAO composite analysis that the NCEP–NCAR reanalysis OLR agrees with the independent observations of the NASA Earth Radiation Budget Experiment (ERBE) broadband satellite instruments both in zonal averages and in geographically mapped space, and to verify AO/AAO characterized general circulations derived from models and analyses. The results indicate several pronounced areas of storminess that are AO/AAO dependent. One is the well-known variation over the North Atlantic Ocean toward Europe. Also, several major areas are indicated in the tropical region—one in the Indian Ocean and the others in the west and central Pacific Ocean. In addition to demonstrating that the signals are statistically significant, also tested is the relationship of the features to other well-known tropical forcing mechanisms: the Madden–Julian oscillation (MJO) and the El Niño–La Niña sea surface temperature variations. It is shown that the tropical features do, in fact, have a strong relationship to the MJO, which indicates an additional tropical–extratropical interaction. With regard to the sea surface temperature, no correlation associated with the AO/AAO variability is seen. These associations with the cloudiness and atmospheric radiation budget suggest that if there is to be improvement of numerical model forecasts to an extended time period that numerical model radiation physics will have to be taken into consideration and improved.


2013 ◽  
Vol 26 (12) ◽  
pp. 4204-4218 ◽  
Author(s):  
Kaya Kanemaru ◽  
Hirohiko Masunaga

Abstract The known characteristics of the relationship between sea surface temperature (SST) and column water vapor (CWV) are reevaluated with recent satellite observations over tropical and subtropical oceans. Satellite data acquired by the Aqua Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E), Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounder Unit (AMSU) suite, the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR), and the Quick Scatterometer (QuikSCAT) SeaWinds are analyzed together for 7 years from October 2002 to September 2009. CWV is decomposed into surface humidity, presumably coupled closely to SST, and the water vapor scale height as an index of vertical moisture gradient between the boundary layer and the free troposphere. Surface relative humidity is climatologically homogeneous across tropical and subtropical oceans, while the dependence of CWV on SST varies from one region to another. SST mainly accounts for the variation of CWV with the water vapor scale height, which is virtually invariant over subtropical oceans. On the other hand, over tropical oceans, the variability of CWV is explained not only by SST but also by a systematic change of the water vapor scale height. The regional contrast between tropical and subtropical oceans is discussed in the context of the regional moisture budget including vertical moisture transport through convection.


2020 ◽  
Vol 4 (2) ◽  
pp. 129
Author(s):  
Ridwan Sala ◽  
Jafry F. Manuhutu

The presence of skipjack fish resources in a fishing area is related to the suitability of the environmental conditions of the waters. This study aims to examine the relationship of sea surface temperature (SPL) to skipjack catches and the characteristics of skipjack catches in Manokwari waters. Data, both catch data and sea surface temperature data, are collected through field surveys by following fishing operations. Furthermore, the data were analyzed descriptively using graphs and mathematically like von Bertalanffy's growth model. The results of this study found that the very small variability of SPL could not explain the variation in the volume of fishermen's catches in Manokwari waters. However, a high SST during the May - August 2013 period is thought to affect the size of the skipjack caught, where the average size of the fish caught inhabited areas near sea level. In addition, the growth of skipjack fish in Manokwari waters is relatively fast with a growth coefficient of 0.42 per year1 and natural mortality between 0.79 per year and 0.81 per year.


Sign in / Sign up

Export Citation Format

Share Document