scholarly journals Biased Random-key Genetic Algorithm for theHybrid Vehicle-drone Routing Problem for Pick-upand Delivery

2021 ◽  
Author(s):  
Anderson Zudio ◽  
Igor Machado Coelho ◽  
Luiz Satoru Ochi

The Hybrid Vehicle drone Routing Problem (HVDRP) was recently introduced as an extension of the classic Vehicle Routing Problem (VRP). In this version, one vehicle is equipped with multiple drones to serve customers with demands for pick-up and delivery. The vehicle travels between stations that serve as parking locations to dispatch drones to attend clients. The drones have limitations in their maximum flight range and carrying capacity. We propose a BRKGA algorithm to solve HVDRP with a decoder component specially tailored to find feasible solutions. The proposed method is empirically analyzed in solution quality through a test set that a mixed-integer programming (MIP) model implementation can optimally solve in reasonable computation time. The computational result shows that the best solution found by BRKGA for each instance of the test set matches the solution quality devised by the MIP implementation. The data also show that the proposed algorithm achieves the best solution consistently through many independent executions. The instance set used and its respective best solutions attained for this work are publicly available.

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 650 ◽  
Author(s):  
He-Yau Kang ◽  
Amy Lee

The vehicle routing problem (VRP) is a challenging combinatorial optimization problem. This research focuses on the problem under which a manufacturer needs to outsource materials from other suppliers and to ship the materials back to the company. Heterogeneous vehicles are available to ship the materials, and each vehicle has a limited loading capacity and a limited travelling distance. The purpose of this research is to study a multiple vehicle routing problem (MVRP) with soft time window and heterogeneous vehicles. Two models, using mixed integer programming (MIP) and genetic algorithm (GA), are developed to solve the problem. The MIP model is first constructed to minimize the total transportation cost, which includes the assignment cost, travelling cost, and the tardiness cost, for the manufacturer. The optimal solution can present multiple vehicle routing and the loading size of each vehicle in each period. The GA is next applied to solve the problem so that a near-optimal solution can be obtained when the problem is too difficult to be solved using the MIP. A case of a food manufacturing company is used to examine the practicality of the proposed MIP model and the GA model. The results show that the MIP model can obtain the optimal solution under a short computational time when the scale of the problem is small. When the problem becomes non-deterministic polynomial hard (NP-hard), the MIP model cannot find the optimal solution. On the other hand, the GA model can obtain a near-optimal solution within a reasonable amount of computational time. This paper is related to several important topics of the Symmetry journal in the areas of mathematics and computer science theory and methods. In the area of mathematics, the theories of linear and non-linear algebraic structures and information technology are adopted. In the area of computer science, theory and methods, and metaheuristics are applied.


2014 ◽  
Vol 931-932 ◽  
pp. 578-582
Author(s):  
Sunarin Chanta ◽  
Ornurai Sangsawang

In this paper, we proposed an optimization model that addresses the evacuation routing problem for flood disaster when evacuees trying to move from affected areas to safe places using public transportation. A focus is on the situation of evacuating during high water level when special high vehicles are needed. The objective is to minimize the total traveled distance through evacuation periods where a limited number of vehicles is given. We formulated the problem as a mixed integer programming model based on the capacitated vehicle routing problem with multiple evcuation periods where demand changing by the time. The proposed model has been tested on a real-world case study affected by the severe flooding in Thailand, 2011.


Author(s):  
S. P. Anbuudayasankar ◽  
K. Ganesh ◽  
Tzong-Ru Lee

This chapter presents the development of simulated annealing (SA) for a health care application which is modeled as Single Depot Vehicle routing problem called Mixed Vehicle Routing Problem with Backhauls (MVRPB), an extension of Vehicle Routing Problem with Backhauls (VRPB). This variant involves both delivery and pick-up customers and sequence of visiting the customers is mixed. The entire pick-up load should be taken back to depot. The latest rapid advancement of meta-heuristics has shown that it can be applied in practice if they are personified in packaged information technology (IT) solutions along with the combination of a Supply Chain Management (SCM) application integrated with an enterprise resource planning (ERP) resulted to this decision support tool. This chapter provides empirical proof in sustain of the hypothesis, that a population extension of SA with supportive transitions leads to a major increase of efficiency and solution quality for MVRPB if and only if the globally optimal solution is located close to the center of all local optimal solutions.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Bochen Wang ◽  
Qiyuan Qian ◽  
Zheyi Tan ◽  
Peng Zhang ◽  
Aizhi Wu ◽  
...  

This study investigates a multidepot heterogeneous vehicle routing problem for a variety of hazardous materials with risk analysis, which is a practical problem in the actual industrial field. The objective of the problem is to design a series of routes that minimize the total cost composed of transportation cost, risk cost, and overtime work cost. Comprehensive consideration of factors such as transportation costs, multiple depots, heterogeneous vehicles, risks, and multiple accident scenarios is involved in our study. The problem is defined as a mixed integer programming model. A bidirectional tuning heuristic algorithm and particle swarm optimization algorithm are developed to solve the problem of different scales of instances. Computational results are competitive such that our algorithm can obtain effective results in small-scale instances and show great efficiency in large-scale instances with 70 customers, 30 vehicles, and 3 types of hazardous materials.


Mathematics ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 771 ◽  
Author(s):  
Cosmin Sabo ◽  
Petrică C. Pop ◽  
Andrei Horvat-Marc

The Generalized Vehicle Routing Problem (GVRP) is an extension of the classical Vehicle Routing Problem (VRP), in which we are looking for an optimal set of delivery or collection routes from a given depot to a number of customers divided into predefined, mutually exclusive, and exhaustive clusters, visiting exactly one customer from each cluster and fulfilling the capacity restrictions. This paper deals with a more generic version of the GVRP, introduced recently and called Selective Vehicle Routing Problem (SVRP). This problem generalizes the GVRP in the sense that the customers are divided into clusters, but they may belong to one or more clusters. The aim of this work is to describe a novel mixed integer programming based mathematical model of the SVRP. To validate the consistency of the novel mathematical model, a comparison between the proposed model and the existing models from literature is performed, on the existing benchmark instances for SVRP and on a set of additional benchmark instances used in the case of GVRP and adapted for SVRP. The proposed model showed better results against the existing models.


2014 ◽  
Vol 1061-1062 ◽  
pp. 1108-1117
Author(s):  
Ya Lian Tang ◽  
Yan Guang Cai ◽  
Qi Jiang Yang

Aiming at vehicle routing problem (VRP) with many extended features is widely used in actual life, multi-depot heterogeneous vehicle routing problem with soft time windows (MDHIVRPSTW) mathematical model is established. An improved ant colony optimization (IACO) is proposed for solving this model. Firstly, MDHIVRPSTW was transferred into different groups according to nearest depot method, then constructing the initial route by scanning algorithm (SA). Secondly, genetic operators were introduced, and then adjusting crossover probability and mutation probability adaptively in order to improve the global search ability of the algorithm. Moreover, smooth mechanism was used to improve the performance of ant colony optimization (ACO). Finally, 3-opt strategy was used to improve the local search ability. The proposed IACO has been tested on a 32-customer instance which was generated randomly. The experimental results show that IACO is superior to other three algorithms in terms of convergence speed and solution quality, thus the proposed method is effective and feasible, and the proposed model is better than conventional model.


2018 ◽  
Vol 20 (4) ◽  
pp. 2085-2108 ◽  
Author(s):  
Hiba Yahyaoui ◽  
Islem Kaabachi ◽  
Saoussen Krichen ◽  
Abdulkader Dekdouk

Abstract We address in this paper a multi-compartment vehicle routing problem (MCVRP) that aims to plan the delivery of different products to a set of geographically dispatched customers. The MCVRP is encountered in many industries, our research has been motivated by petrol station replenishment problem. The main objective of the delivery process is to minimize the total driving distance by the used trucks. The problem configuration is described through a prefixed set of trucks with several compartments and a set of customers with demands and prefixed delivery. Given such inputs, the minimization of the total traveled distance is subject to assignment and routing constraints that express the capacity limitations of each truck’s compartment in terms of the pathways’ restrictions. For the NP-hardness of the problem, we propose in this paper two algorithms mainly for large problem instances: an adaptive variable neighborhood search (AVNS) and a Partially Matched Crossover PMX-based Genetic Algorithm to solve this problem with the goal of ensuring a better solution quality. We compare the ability of the proposed AVNS with the exact solution using CPLEX and a set of benchmark problem instances is used to analyze the performance of the both proposed meta-heuristics.


Sign in / Sign up

Export Citation Format

Share Document