scholarly journals Artificial intelligence applied to support the breast cancer diagnosis

2021 ◽  
Author(s):  
Woldson Leonne Pereira Gomes ◽  
Antonio Silveira

Breast cancer is a more common neoplasm among women (not considering non-melanoma skin cancer). The estimate for the coming years is still growing and poses a threat to human health. Currently, the methods used in the diagnosis of breast cancer are performed through analysis of mammography images. Allowed, an analysis made by two specialists, which are subject to errors due to factors such as fatigue and lack of capacity. Not only the factor of human errors in diagnoses, certainly the long periods of time until the final diagnosis is another factor to be taken into account, because cancer is a progressive disease over time. In this sense, the present work applied a solution through the automatic classification of mammography images, in order to determine as normal or cancer. In addition, for simulations, two machine learning techniques were added independently, as they can eventually serve as a support in the diagnosis of breast cancer, that is, a CAD system, which means “computer-aided diagnosis”. As machine learning techniques applied for classification referenced as convolutional neural networks and support vector machines. Subsequently, the construction of the classification algorithms, they were subjected to the testing phase, which was found to be more than 85% accurate in the classification of mammography images.

2019 ◽  
Vol 21 (3) ◽  
pp. 80-92
Author(s):  
Madhuri Gupta ◽  
Bharat Gupta

Cancer is a disease in which cells in body grow and divide beyond the control. Breast cancer is the second most common disease after lung cancer in women. Incredible advances in health sciences and biotechnology have prompted a huge amount of gene expression and clinical data. Machine learning techniques are improving the prior detection of breast cancer from this data. The research work carried out focuses on the application of machine learning methods, data analytic techniques, tools, and frameworks in the field of breast cancer research with respect to cancer survivability, cancer recurrence, cancer prediction and detection. Some of the widely used machine learning techniques used for detection of breast cancer are support vector machine and artificial neural network. Apache Spark data processing engine is found to be compatible with most of the machine learning frameworks.


2012 ◽  
Vol 03 (06) ◽  
pp. 1020-1028 ◽  
Author(s):  
Edén A. Alanís-Reyes ◽  
José L. Hernández-Cruz ◽  
Jesús S. Cepeda ◽  
Camila Castro ◽  
Hugo Terashima-Marín ◽  
...  

2020 ◽  
Vol 13 (1-2) ◽  
pp. 43-52
Author(s):  
Boudewijn van Leeuwen ◽  
Zalán Tobak ◽  
Ferenc Kovács

AbstractClassification of multispectral optical satellite data using machine learning techniques to derive land use/land cover thematic data is important for many applications. Comparing the latest algorithms, our research aims to determine the best option to classify land use/land cover with special focus on temporary inundated land in a flat area in the south of Hungary. These inundations disrupt agricultural practices and can cause large financial loss. Sentinel 2 data with a high temporal and medium spatial resolution is classified using open source implementations of a random forest, support vector machine and an artificial neural network. Each classification model is applied to the same data set and the results are compared qualitatively and quantitatively. The accuracy of the results is high for all methods and does not show large overall differences. A quantitative spatial comparison demonstrates that the neural network gives the best results, but that all models are strongly influenced by atmospheric disturbances in the image.


Author(s):  
Geraldo Braz Júnior ◽  
Leonardo de Oliveira Martins ◽  
Aristófanes Corrêa Silva ◽  
Anselmo Cardoso de Paiva

Breast cancer is a malignant (cancer) tumor that starts from cells of the breast, being the major cause of deaths by cancer in the female population. There has been tremendous interest in the use of image processing and analysis techniques for computer aided detection (CAD)/ diagnostics (CADx) in digital mammograms. The goal has been to increase diagnostic accuracy as well as the reproducibility of mammographic interpretation. CAD/CADx systems can aid radiologists by providing a second opinion and may be used in the first stage of examination in the near future, providing the reduction of the variability among radiologists in the interpretation of mammograms. This chapter provides an overview of techniques used in computer-aided detection and diagnosis of breast cancer. The authors focus on the application of texture and shape tissues signature used with machine learning techniques, like support vector machines (SVM) and growing neural gas (GNG).


2019 ◽  
Vol 11 (13) ◽  
pp. 1600 ◽  
Author(s):  
Flávio F. Camargo ◽  
Edson E. Sano ◽  
Cláudia M. Almeida ◽  
José C. Mura ◽  
Tati Almeida

This study proposes a workflow for land use and land cover (LULC) classification of Advanced Land Observing Satellite-2 (ALOS-2) Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images of the Brazilian tropical savanna (Cerrado) biome. The following LULC classes were considered: forestlands; shrublands; grasslands; reforestations; croplands; pasturelands; bare soils/straws; urban areas; and water reservoirs. The proposed approach combines polarimetric attributes, image segmentation, and machine-learning procedures. A set of 125 attributes was generated using polarimetric ALOS-2/PALSAR-2 images, including the van Zyl, Freeman–Durden, Yamaguchi, and Cloude–Pottier target decomposition components, incoherent polarimetric parameters (biomass indices and polarization ratios), and HH-, HV-, VH-, and VV-polarized amplitude images. These attributes were classified using the Naive Bayes (NB), DT J48 (DT = decision tree), Random Forest (RF), Multilayer Perceptron (MLP), and Support Vector Machine (SVM) algorithms. The RF, MLP, and SVM classifiers presented the most accurate performances. NB and DT J48 classifiers showed a lower performance in relation to the RF, MLP, and SVM. The DT J48 classifier was the most suitable algorithm for discriminating urban areas and natural vegetation cover. The proposed workflow can be replicated for other SAR images with different acquisition modes or for other types of vegetation domains.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 403
Author(s):  
Muhammad Waleed ◽  
Tai-Won Um ◽  
Tariq Kamal ◽  
Syed Muhammad Usman

In this paper, we apply the multi-class supervised machine learning techniques for classifying the agriculture farm machinery. The classification of farm machinery is important when performing the automatic authentication of field activity in a remote setup. In the absence of a sound machine recognition system, there is every possibility of a fraudulent activity taking place. To address this need, we classify the machinery using five machine learning techniques—K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Gradient Boosting (GB). For training of the model, we use the vibration and tilt of machinery. The vibration and tilt of machinery are recorded using the accelerometer and gyroscope sensors, respectively. The machinery included the leveler, rotavator and cultivator. The preliminary analysis on the collected data revealed that the farm machinery (when in operation) showed big variations in vibration and tilt, but observed similar means. Additionally, the accuracies of vibration-based and tilt-based classifications of farm machinery show good accuracy when used alone (with vibration showing slightly better numbers than the tilt). However, the accuracies improve further when both (the tilt and vibration) are used together. Furthermore, all five machine learning algorithms used for classification have an accuracy of more than 82%, but random forest was the best performing. The gradient boosting and random forest show slight over-fitting (about 9%), but both algorithms produce high testing accuracy. In terms of execution time, the decision tree takes the least time to train, while the gradient boosting takes the most time.


2019 ◽  
Author(s):  
Wilson Castro ◽  
Jimy Oblitas ◽  
Miguel De-la-Torre ◽  
Carlos Cotrina ◽  
Karen Bazán ◽  
...  

The classification of fresh fruits according to their ripeness is typically a subjective and tedious task; consequently, there is growing interest in the use of non-contact techniques such as those based on computer vision and machine learning. In this paper, we propose the use of non-intrusive techniques for the classification of Cape gooseberry fruits. The proposal is based on the use of machine learning techniques combined with different color spaces. Given the success of techniques such as artificial neural networks,support vector machines, decision trees, and K-nearest neighbors in addressing classification problems, we decided to use these approaches in this research work. A sample of 926 Cape gooseberry fruits was obtained, and fruits were classified manually according to their level of ripeness into seven different classes. Images of each fruit were acquired in the RGB format through a system developed for this purpose. These images were preprocessed, filtered and segmented until the fruits were identified. For each piece of fruit, the median color parameter values in the RGB space were obtained, and these results were subsequently transformed into the HSV and L*a*b* color spaces. The values of each piece of fruit in the three color spaces and their corresponding degrees of ripeness were arranged for use in the creation, testing, and comparison of the developed classification models. The classification of gooseberry fruits by ripening level was found to be sensitive to both the color space used and the classification technique, e.g., the models based on decision trees are the most accurate, and the models based on the L*a*b* color space obtain the best mean accuracy. However, the model that best classifies the cape gooseberry fruits based on ripeness level is that resulting from the combination of the SVM technique and the RGB color space.


Sign in / Sign up

Export Citation Format

Share Document