scholarly journals Security for Two-Way Untrusted Relay against Constant and Reactive Jamming with Fixed Signals

2021 ◽  
Vol 10 (3-4) ◽  
Author(s):  
Chan Thai ◽  
Vo-Nguyen Quoc Bao ◽  
De-Thu Huynh

Active attacking in physical-layer security has not been significantly studied while potentially causing serious consequences for the legitimate networks. In this paper, we propose a novel method to estimate and remove the jamming signals from multiple multi-antenna jammers in a two-way relay network with multi-antenna legitimate and relay nodes. We carefully consider the signals in the time slots in order to exploit the repetition of the signals and design the transmitted signals which can work in different cases. The numerical results show that the secrecy maximum achievable sum-rate (MASR) at the legitimate nodes is higher than that of the conventional method when considering the affect of transmit SNR; the number antennas at the legitimate and relay nodes; normalized distance between one legitimate node and the relay; and the vertical coordinate of the relay.

Author(s):  
Maryam Alibeigi ◽  
Shahriar S. Moghaddam

Background & Objective: This paper considers a multi-pair wireless network, which communicates peer-to-peer using some multi-antenna amplify-and-forward relays. Maximizing the throughput supposing that the total relay nodes’ power consumption is constrained, is the main objective of this investigation. We prove that finding the beamforming matrix is not a convex problem. Methods: Therefore, by using a semidefinite relaxation technique we find a semidefinite programming problem. Moreover, we propose a novel algorithm for maximizing the total signal to the total leakage ratio. Numerical analyses show the effectiveness of the proposed algorithm which offers higher throughput compared to the existing total leakage minimization algorithm, with much less complexity. Results and Conclusion: Furthermore, the effect of different parameters such as, the number of relays, the number of antennas in each relay, the number of transmitter/receiver pairs and uplink and downlink channel gains are investigated.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Tian ◽  
Xianling Wang ◽  
Zhanwei Wang

The conventional nonorthogonal multiple access (NOMA) strategy has secrecy challenge in coordinated multipoint (CoMP) networks. Under the secrecy considerations, this paper focuses on the security-based NOMA system, which aims to improve the physical layer security issues of conventional NOMA in the coordinated multipoint (NOMA-CoMP) networks. The secrecy performance of S-NOMA in CoMP, that is, the secrecy sum-rate and the secrecy outage probability, is analysed. In contrast to the conventional NOMA (C-NOMA), the results show that the proposed S-NOMA outperforms C-NOMA in terms of the secrecy outage probability and security-based effective sum-rate.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 24819-24828 ◽  
Author(s):  
Hui Shi ◽  
Yueming Cai ◽  
Dechuan Chen ◽  
Jianwei Hu ◽  
Weiwei Yang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Langtao Hu ◽  
Xin Zheng ◽  
Chunsheng Chen

The physical layer security of downlink nonorthogonal multiple access (NOMA) network is analyzed. In order to improve the secrecy probability, friendly jammers are jointed in the NOMA network. Two jammer schemes are proposed in the NOMA network. All the jammers transmit jamming signal without jammer selection in the first scheme (NO JS scheme). Jammers are selected to transmit jamming signal if their interfering power on scheduled users is below a threshold in the second scheme (JS scheme). A stochastic geometry approach is applied to analyze the outage probability and the secrecy probability. Compared with the NO JS scheme and traditional scheme (without jointing jammers), the jammer selection scheme provides a good balance between the user outage probability and secrecy probability. Numerical results demonstrate that the security performance of the two proposed schemes can be improved by jointing the jammers in the NOMA wireless network.


Entropy ◽  
2019 ◽  
Vol 21 (11) ◽  
pp. 1038 ◽  
Author(s):  
Woong Son ◽  
Han Seung Jang ◽  
Bang Chul Jung

In this paper, we propose a pseudo-random beamforming (PRBF) technique for improving physical-layer security (PLS) in multiple input multiple output (MIMO) downlink cellular networks consisting of a legitimate base station (BS), multiple legitimate mobile stations (MSs) and potential eavesdroppers. The legitimate BS can obtain available potential eavesdroppers’ channel state information (CSI), which is registered in an adjacent cell. In the proposed PRBF technique, the legitimate BS pseudo-randomly generates multiple candidates of the transmit beamforming (BF) matrix, in which each transmit BF matrix consists of multiple orthonormal BF vectors and shares BF information with legitimate MSs before data transmission. Each legitimate MS generates receive BF vectors to maximize the receive signal-to-interference-plus-noise (SINR) for all pseudo-randomly generated transmit beams and calculates the corresponding SINR. Then, each legitimate MS sends a single beam index and the corresponding SINR value of the BF vector that maximizes the received SINR for each BF matrix since a single spatial stream is sent to each legitimate MS. Based on the feedback information from legitimate MSs and the CSI from the legitimate BS to eavesdroppers, the legitimate BS selects the optimal transmit BF matrix and the legitimate MSs that maximizes secrecy sum-rate. We also propose a codebook-based opportunistic feedback (CO-FB) strategy to reduce feedback overhead at legitimate MSs. Based on extensive computer simulations, the proposed PRBF with the proposed CO-FB significantly outperforms the conventional random beamforming (RBF) with the conventional opportunistic feedback (O-FB) strategies in terms of secrecy sum-rate and required feedback bits.


Sign in / Sign up

Export Citation Format

Share Document