scholarly journals A roller bearing fault diagnosis method using interval support vector deterministic optimization based on nested PSO

2018 ◽  
Vol 20 (8) ◽  
pp. 2866-2877 ◽  
Author(s):  
Yongqi Chen ◽  
Qinge Dai ◽  
Yang Chen
2013 ◽  
Vol 694-697 ◽  
pp. 1160-1166
Author(s):  
Ke Heng Zhu ◽  
Xi Geng Song ◽  
Dong Xin Xue

This paper presents a fault diagnosis method of roller bearings based on intrinsic mode function (IMF) kurtosis and support vector machine (SVM). In order to improve the performance of kurtosis under strong levels of background noise, the empirical mode decomposition (EMD) method is used to decompose the bearing vibration signals into a number of IMFs. The IMF kurtosis is then calculated because of its sensitivity of impulses caused by faults. Subsequently, the IMF kurtosis values are treated as fault feature vectors and input into SVM for fault classification. The experimental results show the effectiveness of the proposed approach in roller bearing fault diagnosis.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
HungLinh Ao ◽  
Junsheng Cheng ◽  
Kenli Li ◽  
Tung Khac Truong

This study investigates a novel method for roller bearing fault diagnosis based on local characteristic-scale decomposition (LCD) energy entropy, together with a support vector machine designed using an Artificial Chemical Reaction Optimisation Algorithm, referred to as an ACROA-SVM. First, the original acceleration vibration signals are decomposed into intrinsic scale components (ISCs). Second, the concept of LCD energy entropy is introduced. Third, the energy features extracted from a number of ISCs that contain the most dominant fault information serve as input vectors for the support vector machine classifier. Finally, the ACROA-SVM classifier is proposed to recognize the faulty roller bearing pattern. The analysis of roller bearing signals with inner-race and outer-race faults shows that the diagnostic approach based on the ACROA-SVM and using LCD to extract the energy levels of the various frequency bands as features can identify roller bearing fault patterns accurately and effectively. The proposed method is superior to approaches based on Empirical Mode Decomposition method and requires less time.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Wei-Li Qin ◽  
Wen-Jin Zhang ◽  
Zhen-Ya Wang

Roller bearings are one of the most commonly used components in rotational machines. The fault diagnosis of roller bearings thus plays an important role in ensuring the safe functioning of the mechanical systems. However, in most cases of bearing fault diagnosis, there are limited number of labeled data to achieve a proper fault diagnosis. Therefore, exploiting unlabeled data plus few labeled data, this paper proposed a roller bearing fault diagnosis method based on tritraining to improve roller bearing diagnosis performance. To overcome the noise brought by wrong labeling into the classifiers training process, the cut edge weight confidence is introduced into the diagnosis framework. Besides a small trick called suspect principle is adopted to avoid overfitting problem. The proposed method is validated in two independent roller bearing fault experiment vibrational signals that both include three types of faults: inner-ring fault, outer-ring fault, and rolling element fault. The results demonstrate the desirable diagnostic performance improvement by the proposed method in the extreme situation where there is only limited number of labeled data.


Information ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 359 ◽  
Author(s):  
Jianghua Ge ◽  
Guibin Yin ◽  
Yaping Wang ◽  
Di Xu ◽  
Fen Wei

To improve the accuracy of rolling-bearing fault diagnosis and solve the problem of incomplete information about the feature-evaluation method of the single-measurement model, this paper combines the advantages of various measurement models and proposes a fault-diagnosis method based on multi-measurement hybrid-feature evaluation. In this study, an original feature set was first obtained through analyzing a collected vibration signal. The feature set included time- and frequency-domain features, and also, based on the empirical-mode decomposition (EMD)-obtained time-frequency domain, energy and Lempel–Ziv complexity features. Second, a feature-evaluation framework of multiplicative hybrid models was constructed based on correlation, distance, information, and other measures. The framework was used to rank features and obtain rank weights. Then the weights were multiplied by the features to obtain a new feature set. Finally, the fault-feature set was used as the input of the category-divergence fault-diagnosis model based on kernel principal component analysis (KPCA), and the fault-diagnosis model was based on a support vector machine (SVM). The clustering effect of different fault categories was more obvious and classification accuracy was improved.


2017 ◽  
Vol 2017 ◽  
pp. 1-16 ◽  
Author(s):  
Haodong Yuan ◽  
Jin Chen ◽  
Guangming Dong

A novel bearing fault diagnosis method based on improved locality-constrained linear coding (LLC) and adaptive PSO-optimized support vector machine (SVM) is proposed. In traditional LLC, each feature is encoded by using a fixed number of bases without considering the distribution of the features and the weight of the bases. To address these problems, an improved LLC algorithm based on adaptive and weighted bases is proposed. Firstly, preliminary features are obtained by wavelet packet node energy. Then, dictionary learning with class-wise K-SVD algorithm is implemented. Subsequently, based on the learned dictionary the LLC codes can be solved using the improved LLC algorithm. Finally, SVM optimized by adaptive particle swarm optimization (PSO) is utilized to classify the discriminative LLC codes and thus bearing fault diagnosis is realized. In the dictionary leaning stage, other methods such as selecting the samples themselves as dictionary and K-means are also conducted for comparison. The experiment results show that the LLC codes can effectively extract the bearing fault characteristics and the improved LLC outperforms traditional LLC. The dictionary learned by class-wise K-SVD achieves the best performance. Additionally, adaptive PSO-optimized SVM can greatly enhance the classification accuracy comparing with SVM using default parameters and linear SVM.


Sign in / Sign up

Export Citation Format

Share Document