scholarly journals Exact Solutions of the Two Dimensional KdV-Burger Equation by Generalized Kudryashov Method

Author(s):  
Yusuf PANDIR ◽  
Sahragül EREN
2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Seyma Tuluce Demiray ◽  
Yusuf Pandir ◽  
Hasan Bulut

In this study, the generalized Kudryashov method (GKM) is handled to find exact solutions of time-fractional Burgers equation, time-fractional Cahn-Hilliard equation, and time-fractional generalized third-order KdV equation. These time-fractional equations can be turned into another nonlinear ordinary differantial equation by travelling wave transformation. Then, GKM has been implemented to attain exact solutions of time-fractional Burgers equation, time-fractional Cahn-Hilliard equation, and time-fractional generalized third-order KdV equation. Also, some new hyperbolic function solutions have been obtained by using this method. It can be said that this method is a generalized form of the classical Kudryashov method.


2018 ◽  
Vol 22 ◽  
pp. 01056 ◽  
Author(s):  
Seyma Tuluce Demiray ◽  
Hasan Bulut

In this paper, generalized Kudryashov method (GKM) is used to find the exact solutions of (1+1) dimensional nonlinear Ostrovsky equation and (4+1) dimensional Fokas equation. Firstly, we get dark and bright soliton solutions of these equations using GKM. Then, we remark the results we found using this method.


2020 ◽  
Vol 66 (6 Nov-Dec) ◽  
pp. 771
Author(s):  
Yusuf Gurefe

In this article, we consider the exact solutions of the Hunter-Saxton and Schrödinger equations defined by Atangana's comformable derivative using the general Kudryashov method. Firstly, Atangana's comformable fractional derivative and its properties are included. Then, by introducing the generalized Kudryashov method, exact solutions of nonlinear fractional partial differential equations (FPDEs), which can be expressed with the comformable derivative of Atangana, are classified. Looking at the results obtained, it is understood that the generalized Kudryashov method can yield important results in obtaining the exact solutions of FPDEs containing beta-derivatives.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 129-139 ◽  
Author(s):  
EL Sayed M.E. Zayed ◽  
Abdul-Ghani Al-Nowehy

AbstractIn this article, we apply the generalized Kudryashov method for finding exact solutions of three nonlinear partial differential equations (PDEs), namely: the Biswas-Milovic equation with dual-power law nonlinearity; the Zakharov--Kuznetsov equation (ZK(m,n,k)); and the K(m,n) equation with the generalized evolution term. As a result, many analytical exact solutions are obtained including symmetrical Fibonacci function solutions, and hyperbolic function solutions. Physical explanations for certain solutions of the three nonlinear PDEs are obtained.


2018 ◽  
Vol 13 (01) ◽  
pp. 2050022 ◽  
Author(s):  
Alphonse Houwe ◽  
Mibaile Justin ◽  
Serge Y. Doka ◽  
Kofane Timoleon Crepin

This paper extracts the analytical soliton solutions of the perturbed NLSE given in (1). We use successfully two integration methods namely the extended simple equation method and generalized Kudryashov method. In view of the results obtained, some new additional ones have been obtained. The results are dark, bright and exact solutions that propagate in the fiber optic and left-handed metamaterials (LHMs).


Author(s):  
Ahmed Gaber ◽  
Hijaz Ahmad

In this article, space-time fractional coupled integrable dispersionless system is considered, and we use fractional derivative in the sense of modified Riemann-Liouville. The fractional system has reduced to an ordinary differential system by fractional transformation and the generalized Kudryashov method is applied to obtain exact solutions. We also testify performance as well as precision of the applied method by means of numerical tests for obtaining solutions. The obtained results have been graphically presented to show the properties of the solutions.


Computation ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 52
Author(s):  
Supaporn Kaewta ◽  
Sekson Sirisubtawee ◽  
Surattana Sungnul

The key objective of this paper is to construct exact traveling wave solutions of the conformable time second integro-differential Kadomtsev–Petviashvili (KP) hierarchy equation using the Exp-function method and the (2 + 1)-dimensional conformable time partial integro-differential Jaulent–Miodek (JM) evolution equation utilizing the generalized Kudryashov method. These two problems involve the conformable partial derivative with respect to time. Initially, the conformable time partial integro-differential equations can be converted into nonlinear ordinary differential equations via a fractional complex transformation. The resulting equations are then analytically solved via the corresponding methods. As a result, the explicit exact solutions for these two equations can be expressed in terms of exponential functions. Setting some specific parameter values and varying values of the fractional order in the equations, their 3D, 2D, and contour solutions are graphically shown and physically characterized as, for instance, a bell-shaped solitary wave solution, a kink-type solution, and a singular multiple-soliton solution. To the best of the authors’ knowledge, the results of the equations obtained using the proposed methods are novel and reported here for the first time. The methods are simple, very powerful, and reliable for solving other nonlinear conformable time partial integro-differential equations arising in many applications.


Sign in / Sign up

Export Citation Format

Share Document