scholarly journals Examining the Function of Meromorphic with Using the Linear Convolution Operator

Author(s):  
Hasan ŞAHİN
2020 ◽  
Vol 26 (2) ◽  
pp. 185-192
Author(s):  
Sunanda Naik ◽  
Pankaj K. Nath

AbstractIn this article, we define a convolution operator and study its boundedness on mixed-norm spaces. In particular, we obtain a well-known result on the boundedness of composition operators given by Avetisyan and Stević in [K. Avetisyan and S. Stević, The generalized Libera transform is bounded on the Besov mixed-norm, BMOA and VMOA spaces on the unit disc, Appl. Math. Comput. 213 2009, 2, 304–311]. Also we consider the adjoint {\mathcal{A}^{b,c}} for {b>0} of two parameter families of Cesáro averaging operators and prove the boundedness on Besov mixed-norm spaces {B_{\alpha+(c-1)}^{p,q}} for {c>1}.


2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Michael Herrmann ◽  
Karsten Matthies

AbstractWe study the eigenvalue problem for a superlinear convolution operator in the special case of bilinear constitutive laws and establish the existence and uniqueness of a one-parameter family of nonlinear eigenfunctions under a topological shape constraint. Our proof uses a nonlinear change of scalar parameters and applies Krein–Rutman arguments to a linear substitute problem. We also present numerical simulations and discuss the asymptotics of two limiting cases.


Author(s):  
Maxime Martineau ◽  
Romain Raveaux ◽  
Donatello Conte ◽  
Gilles Venturini

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Saqib Hussain ◽  
Akhter Rasheed ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

We investigate some subclasses ofk-uniformly convex andk-uniformly starlike functions in open unit disc, which is generalization of class of convex and starlike functions. Some coefficient inequalities, a distortion theorem, the radii of close-to-convexity, and starlikeness and convexity for these classes of functions are studied. The behavior of these classes under a certain modified convolution operator is also discussed.


Author(s):  
Andrew Fominykh ◽  
Tov Elperin ◽  
Boris Krasovitov

We analyze non-isothermal absorption of trace gases by the rain droplets with internal circulation which is caused by interfacial shear stresses. It is assumed that the temperature and concentration of soluble trace gases in the atmosphere varies in a vertical direction. The rate of scavenging of soluble trace gases by falling rain droplets is determined by solving heat and mass transfer equations. In the analysis we accounted for the accumulation of the absorbate in the bulk of the falling rain droplet. The problem is solved in the approximation of a thin concentration and temperature boundary layers in the droplet and in the surrounding air. We assumed that the bulk of a droplet, beyond the diffusion boundary layer, is completely mixed and concentration of the absorbate and temperature are homogeneous and time-dependent in the bulk. By combining the generalized similarity transformation method with Duhamel’s theorem, the system of transient conjugate equations of convective diffusion and energy conservation for absorbate transport in liquid and gaseous phases with time-dependent boundary conditions is reduced to a system of linear convolution Volterra integral equations of the second kind which is solved numerically. Calculations are performed using available experimental data on nocturnal temperature profiles in the atmosphere. It is shown than if concentration of a trace gas in the atmosphere is homogeneous and temperature in the atmosphere increases with altitude, droplet absorbs gas during all the period of its fall. Neglecting temperature inhomogenity in the atmosphere described by nocturnal temperature inversion leads to essential underestimation of the trace gas concentration in a droplet on the ground.


Sign in / Sign up

Export Citation Format

Share Document