scholarly journals MODIFIED STARCH AS ADDITIVES TO IMPROVE TISSUE PAPER PROPERTIES

2018 ◽  
Vol 29 (Issue 2-A) ◽  
pp. 55-70
2012 ◽  
Vol 128 (6) ◽  
pp. 3672-3677 ◽  
Author(s):  
Imtiaz Ali ◽  
Shafiq urRehman ◽  
Syed Hyder Ali ◽  
Asad Javaid

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 846-861
Author(s):  
Flávia P. Morais ◽  
Ana M. M. S. Carta ◽  
Maria E. Amaral ◽  
Joana M. R. Curto

Effects of enzymatic modification were evaluated in bleached Eucalyptus kraft and sulfite cellulosic pulps, separately, to improve key tissue paper properties and design new Eucalyptus fiber applications. Different cellulase dosages (0.01 mg and 0.1 mg of enzyme/g of pulp) and reaction times (30 min and 60 min) were used to modify the fibers and replace the traditional mechanical based refining or beating process. The results showed that for enzymatic modified kraft and sulfite pulps, the softness properties were improved by 1 and 2 units, respectively, for each unit of decreased strength properties. To achieve a balance between the tissue properties, the different fiber pulp furnishes that contained 80% of the enzymatically treated kraft pulp and 20% of the sulfite pulp with and without enzymatic treatment, were studied. Overall, the structures made with these mixtures presented softness properties in the commercial range (57.8 to 74.4), improved absorption properties (107 mm to 120 mm of capillary rise), and good strength properties (13.0 to 17.7 N.m/g). This study was conducted in order to adjust the fiber furnishes according to industrial tissue standards, using one Eucalyptus fiber type providing strength and another providing softness.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3982
Author(s):  
Flávia P. Morais ◽  
Ana M. M. S. Carta ◽  
Maria E. Amaral ◽  
Joana M. R. Curto

Tissue paper production frequently combines two main types of raw materials: cellulose fibers from renewable sources and polymer-based additives. The development of premium products with improved properties and functionalities depends on the optimization of both. This work focused on the combination of innovative experimental and computational strategies to optimize furnish. The main goal was to improve the functional properties of the most suitable raw materials for tissue materials and develop new differentiating products with innovative features. The experimental plan included as inputs different fiber mixtures, micro/nano fibrillated cellulose, and biopolymer additives, and enzymatic and mechanical process operations. We present an innovative tissue paper simulator, the SimTissue, that we have developed, to establish the correlations between the tissue paper process inputs and the end-use paper properties. Case studies with industrial interest are presented in which the tissue simulator was used to design tissue paper materials with different fiber mixtures, fiber modification treatments, micro/nano fibrillated cellulose, and biopolymer formulations, and to estimate tissue softness, strength, and absorption properties. The SimTissue was able to predict and optimize a broader range of formulations containing micro/nanocellulose fibers, biopolymer additives, and treated-fiber mixtures, saving laboratory and industrial resources.


Wood Research ◽  
2020 ◽  
Vol 65 (3) ◽  
pp. 447-458
Author(s):  
MONIKA STANKOVSKÁ ◽  
MÁRIA FIŠEROVÁ ◽  
JURAJ GIGAC ◽  
ELENA OPÁLENÁ

2016 ◽  
Vol 2 (01) ◽  
Author(s):  
Nina Elyani ◽  
Jenni Rismijana ◽  
Teddy Kardiansyah ◽  
Cucu ,

This research has been conducted through several steps. Step I was base papermaking using 80% LBKP and 20 % NBKP. They were refine separately up to 300 ml CSF, then mixed with 15% CaCO3, 0.6% AKD, 0.5% poliacrylamide, and 1,5% cationic starch to dry-weight of fibers. Step II was modifying starch enzymaticaly at 70-75°C, pH 6.5 - 7.0, amylase 0,05% for 15 minutes. Step III was base-paper coating with varied adhesives. Variation I use natural starch, Variation II use enzymatic modified starch, Variation III use commercial starch each of 8%. Testing for the handsheets comprise of brightness, roughtness, picking strength, water penetration, and pH. The results showed that the viscosity for natural starch, enzymatic starch and commercial starch respectively at 8000 cPs, 26 cPs and 114 cPs. The use of enzymatic modified starch give the best paper properties. The experiments has replicated in a laboratory of paper industry, with the same results, using clay and CaCO3 at 40:60 ratio, enzymatic starch, commercial starch, and natural starch.Keywords: starch, coated printing paper, amylase, viscosity.  ABSTRAK Penelitian ini dilakukan melalui beberapa tahapan. Tahap I adalah pembuatan kertas dasar dengan menggunakan bahan baku 80% serat pendek atau leaf bleached kraft pulp (LBKP) dan 20% serat panjang atau needle bleached kraft pulp ( NBKP) digiling secara terpisah hingga mencapai derajat giling 300 ml CSF. Selanjutnya pulp dicampur ke dalam bahan kimia yang terdiri 15 % CaCO3, 0,6% AKD, 1,5% pati kationik dan Poliakrilamida sebesar 0,5% terhadap berat kering pulp. Lembaran dibuat pada gramatur 60 g/m2. Tahap II adalah pembuatan pati termodifikasi enzimatis pada kondisi inkubasi suhu sekitar 70 – 75oC, pH : 6,5 – 7,0, waktu selama 15 menit dengan penambahan amilase sebesar 0,05%. Tahap III adalah proses penyalutan kertas dasar dengan pati termodifikasi enzimatis, sebagai pembanding menggunakan pati alam maupun pati komersial. Kemudian dilakukan pengujian terhadap lembaran yang dihasilkan meliputi : derajat putih, kekasaran, penetrasi minyak, ketahanan cabut, daya serap air dan pH. Selanjutnya dilakukan uji coba di industri dengan komposisi pigmen kaolin dan kalsium karbonat 40 : 60 menggunakan pati enzim, pati komersial, dan pati alam. Hasil percobaan menunjukkan bahwa viskositas untuk pati alam, pati enzim dan pati komersial masing-masing adalah sebasar 8000 cPs, 26 cPs dan 114 cPs. Penggunaan pati modifikasi enzim memberikan sifat kertas yang paling baik. Hasil replikasi percobaan di laboratorium industri, pati enzim juga menghasilkan sifat kertas yang lebih baik.Kata kunci: pati, kertas cetak salut, amilase, viskositas.  


Cellulose ◽  
2020 ◽  
Vol 27 (10) ◽  
pp. 5981-5999 ◽  
Author(s):  
Tiago de Assis ◽  
Joel Pawlak ◽  
Lokendra Pal ◽  
Hasan Jameel ◽  
Lee W. Reisinger ◽  
...  

2019 ◽  
Vol 53 (5-6) ◽  
pp. 469-477 ◽  
Author(s):  
MÁRIA FIŠEROVÁ ◽  
◽  
JURAJ GIGAC ◽  
MONIKA STANKOVSKÁ ◽  
ELENA OPÁLENÁ ◽  
...  

Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 505-516
Author(s):  
Monika Stankovská ◽  
Mária Fišerová ◽  
Juraj Gigac ◽  
Elena Opálená

The influence of addition of deinked pulps with low and high brightness to bleached eucalyptus and pine kraft pulps on functional tissue paper properties was studied. Deinked pulps with low and high brightness had some different functional properties. Deinked pulp with high brightness has higher bulk, porosity, water absorption after immersion, initial water absorption, bulk softness as well as brightness. On the contrary, the difference in relative bonded area and porosity e between deinked pulps with low and high brightness was moderate. The mixed pulps laboratory pulp sheets from bleached eucalyptus kraft pulp or bleached pine kraft pulp with addition of 20, 40 and 80% of deinked pulp with low brightness or deinked pulp with high brightness were prepared. The addition of the deinked pulp with high or low brightness to bleached kraft pulp leads to increasing of bulk, bulk softness as well as high water absorption after immersion and initial water absorption. The tensile index rapidly decreased by the addition of deinked pulps with high brightness to bleached eucalyptus and pine kraft pulps. Similarly, the addition of deinked pulp with low brightness to bleached pine kraft pulp led to rapid decreasing of tensile index. On contrary, with the addition of deinked pulp with low brightness to eucalyptus kraft pulp, the decreasing of tensile index was less pronounced. Mixed pulp from bleached eucalyptus kraft pulp with a small content of deinked pulp with low brightness with functional properties suitable for production of tissue papers was found as optimal.


Sign in / Sign up

Export Citation Format

Share Document