scholarly journals Cellulose fiber enzymatic modification to improve the softness, strength, and absorption properties of tissue papers

BioResources ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 846-861
Author(s):  
Flávia P. Morais ◽  
Ana M. M. S. Carta ◽  
Maria E. Amaral ◽  
Joana M. R. Curto

Effects of enzymatic modification were evaluated in bleached Eucalyptus kraft and sulfite cellulosic pulps, separately, to improve key tissue paper properties and design new Eucalyptus fiber applications. Different cellulase dosages (0.01 mg and 0.1 mg of enzyme/g of pulp) and reaction times (30 min and 60 min) were used to modify the fibers and replace the traditional mechanical based refining or beating process. The results showed that for enzymatic modified kraft and sulfite pulps, the softness properties were improved by 1 and 2 units, respectively, for each unit of decreased strength properties. To achieve a balance between the tissue properties, the different fiber pulp furnishes that contained 80% of the enzymatically treated kraft pulp and 20% of the sulfite pulp with and without enzymatic treatment, were studied. Overall, the structures made with these mixtures presented softness properties in the commercial range (57.8 to 74.4), improved absorption properties (107 mm to 120 mm of capillary rise), and good strength properties (13.0 to 17.7 N.m/g). This study was conducted in order to adjust the fiber furnishes according to industrial tissue standards, using one Eucalyptus fiber type providing strength and another providing softness.

Author(s):  
K. W. Robinson

Tension wood (TW) is an abnormal tissue of hardwood trees; although it has been isolated from most parts of the tree, it is frequently found on the upper side of branches and leaning stems. TW has been classically associated with geotropic alignment, but more recently it has been associated with fast growth. Paper made from TW is generally lower in strength properties. Consequently, the paper industries' growing dependence on fast growing, short- rotation trees will result in higher amounts of TW in the final product and a corresponding reduction in strength.Relatively few studies have dealt with the role of TW in the structure of paper. It was suggested that the lower strength properties of TW were due to a combination of factors, namely, its unique morphology, compression failures in the cell wall, and lower hemicellulose content. Central to the unique morphology of the TW fiber is the thick gelatinous layer (G-layer) composed almost entirely of pure cellulose.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (10) ◽  
pp. 643-651 ◽  
Author(s):  
ROBERT J. OGLESBY ◽  
HUMPHREY J. MOYNIHAN ◽  
RICARDO B. SANTOS ◽  
ASHOK GHOSH ◽  
PETER W. HART

The impact of commercially prepared, fully bleached pulp viscosity variation on handsheet physical properties was evaluated at different levels of pulp refining. Hardwood pulps from the same brownstock species mix, cooking parameters, and kappa numbers were processed through two different commercial bleach plants: one with a D0(EP)D1D2 sequence and the second with an OD0(EOP)D1 sequence. Additionally, a commercial softwood (predominately Scotts pine) brownstock pulp bleached by an OD0(EP)D1D2 sequence was employed in this study. Pulps with viscosities ranging from 14 to 21 mPa∙s were refined in a Valley beater to two freeness levels, and the associated handsheet physical properties were measured in this study. Over the pulp viscosity range of 14 to 21 mPa∙s, no clear correlation was found to exist between pulp viscosity and related paper physical properties. Finally, a series of laboratory prepared bleached pulps were purposely prepared under non-ideal conditions to reduce their final viscosities to lower values. Handsheets made from these pulps were tested in their unbeaten condition for physical strength properties. Significant and rapid strength loss occurred when the measured pulp viscosity dropped below 12 mPa∙s; overall strength properties showed no correlation to viscosity above the critical 12 mPa∙s value.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 631-638
Author(s):  
FREDERIC KREPLIN ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

Paper for recycling is an important fiber source for the production of corrugated base paper. The change in production capacity toward more and more packaging papers affects the composition of paper for recycling and influences the paper quality. This research project investigated the influence of the multiple recycling of five different corrugated base papers (kraftliner, neutral sulfite semichemical [NSSC] fluting, corrugating medium, testliner 2, and testliner 3) on suspension and strength properties under laboratory conditions. The corrugated board base papers were repulped in a low consistency pulper and processed into Rapid-Köthen laboratory sheets. The sheets were then recycled up to 15 times in the same process. In each cycle, the suspension and the paper properties were recorded. In particular, the focus was on corrugated board-specific parameters, such as short-span compression test, ring crush test, corrugating medium test, and burst. The study results indicate how multiple recycling under laboratory conditions affects fiber and paper properties.


2020 ◽  
Vol 299 ◽  
pp. 986-992
Author(s):  
Dmitry B. Prosvirnikov ◽  
Nail F. Timerbaev ◽  
Zulfiya G. Sattarova

The article presents the results of using activated lingo-cellulosic material, obtained by the method of steam explosion treatment, as the basis for the production of composite pressed boards without a binder. The influence of steam explosion treatment modes on the physical and chemical properties of the wood pulp product and the strength properties of the resulting board materials is considered.


2018 ◽  
Vol 33 (3) ◽  
pp. 397-403 ◽  
Author(s):  
Hafizur Rahman ◽  
Per Engstrand ◽  
Peter Sandström ◽  
Björn Sjöstrand

Abstract Previous paper (Rahman et al. 2017) showed that the yield of softwood kraft pulp increased by the addition of either polysulfide or sodium borohydride because of higher hemicellulose retention. An increase in hemicellulose content can make dewatering more difficult as WRV of the pulp increases, but instead, an overall increase in pulp yield could improve dewatering as a sheet of a certain weight will contain fewer fibres, giving a more open sheet structure. It was therefore of interest to measure the dewatering properties of low grammage handsheets (20 g/m2) under conditions mimicking the tissue paper machine dewatering processes, and sheet strength properties, WRV, °SR and fibre dimensions were also studied. The results showed that the positive influence of overall yield increase dominated over the negative influence of an increase in hemicellulose content on the dewatering properties, particularly at lower refining energy levels. Moreover, higher yield and higher hemicellulose content pulps had a higher tensile index at the same dryness. A given tensile index was achieved with less refining energy. The results indicate that increased yield and hemicellulose content by modification of the kraft pulping process will result in a pulp with a potential to improve tissue paper quality.


2013 ◽  
Vol 821-822 ◽  
pp. 139-143
Author(s):  
Li Yang ◽  
Song Mei Bi ◽  
Lei Zhou ◽  
Ying Feng Wang

In order to compare differences between the structure and properties of pupa protein fiber and rousi fiber ,test morphology and molecular structure of fiber by using optical microscope, X ray diffraction, fourier transform infrared spectroscopy (FT-IR) . The results show that:the two kinds of fiber morphology consistent with the ordinary viscose, the pupa protein fiber crystallinity and degree of orientation are higher than the rousi fiber, and rousi fibers contain small amounts of metal elements, the pupa protein fiber mechanical properties, moisture absorption properties and heat resistance are superior to rousi fiber.


2018 ◽  
Author(s):  
Imtiaz Ali

Incorporation of recycled fibres in high value paper products can reduce cost and environmental loads. Papermaking potential of cellulosic fibres decreases with recycling. The phenomenon of fibre hornification during pressing and drying is normally held responsible for the loss in strength. To study the impacts of recycling on pulp, fibre and paper properties some non conventional characterisation techniques like fibre saturation point, X-rays microtomography, environmental scanning electron microscopic observations, atomic forcemicroscope (PeakForce QNM mode) and inverse size exclusion chromatography(ISEC) were used. In order to achieve good reproducibility of ISEC measurements,a semi-automatic column fabrication pilot system was built. The techniques were first validated on refining process before being applied to the recycling process. In this study, it was found that fibre hornification alone cannot fully explain loss in strength during recycling. The loss in strength is much more complex and it is required to understand the morphological and ultrastructural changes associated with recycling. Fibre width, cell wall thickness,curl, kink, irregularities decreased during recycling. Fibre became hard and brittle in dry state. Number of weak points in the fibre wall were increased initially and in the later recyclings. The increase in wet breaking length indicates increased surface friction and capillary forces with recycling. Decrease in bonded area during first recycle may be caused by the loss of fines and fibre flexibility whereas the increase afterwards may be linked to the lumen collapse.The strength of fibres did not decrease with recycling as shown by zero-span breaking lengths therefore the quality of bond may be deteriorated. It was thought that the partially delaminated P/S1 layers may be responsible for the loss of paper strength. It is suggested since the significant change is associated with the pressing and drying of never dried pulp therefore the drying process needs to be revisited. The delaminated layer should be restored so as to increase the recyclability of the recovered fibres for high value paper. Influence of recycled pulp blends on physical properties of paper was also studied. It was revealed that small quantity of recycled pulp can be used without significantly affecting the mechanical strength properties.


Polymers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3982
Author(s):  
Flávia P. Morais ◽  
Ana M. M. S. Carta ◽  
Maria E. Amaral ◽  
Joana M. R. Curto

Tissue paper production frequently combines two main types of raw materials: cellulose fibers from renewable sources and polymer-based additives. The development of premium products with improved properties and functionalities depends on the optimization of both. This work focused on the combination of innovative experimental and computational strategies to optimize furnish. The main goal was to improve the functional properties of the most suitable raw materials for tissue materials and develop new differentiating products with innovative features. The experimental plan included as inputs different fiber mixtures, micro/nano fibrillated cellulose, and biopolymer additives, and enzymatic and mechanical process operations. We present an innovative tissue paper simulator, the SimTissue, that we have developed, to establish the correlations between the tissue paper process inputs and the end-use paper properties. Case studies with industrial interest are presented in which the tissue simulator was used to design tissue paper materials with different fiber mixtures, fiber modification treatments, micro/nano fibrillated cellulose, and biopolymer formulations, and to estimate tissue softness, strength, and absorption properties. The SimTissue was able to predict and optimize a broader range of formulations containing micro/nanocellulose fibers, biopolymer additives, and treated-fiber mixtures, saving laboratory and industrial resources.


2018 ◽  
Vol 49 ◽  
pp. 00009
Author(s):  
Przemysław Brzyski

Hydrated lime, due to its life cycle (return to the natural form as a result of binding and hardening) shows a positive ecological aspect. The binder is often used in building materials based on plant components due to the high alkaline reaction and low diffusion resistance, as well as in mortars and plasters. However, it is an air binder with low strength parameters and the process of its binding and hardening is long-lasting. One of the ways to accelerate the binding processes and also to increase the strength of the binder is the use of additives in the form of pozzolanic materials which react with calcium hydroxide and form compounds with hydraulic properties. These are natural materials or industrial waste, so they do not affect the environmental impact of lime binder. The article presents the influence of the addition of pozzolan (three types) in various weight amounts, on the strength properties of mortars, their absorbability and capillary rise (presented as water absorption coefficient). The influence of pozzolan presence on workability of fresh mortars - their consistency was also checked.


Holzforschung ◽  
2006 ◽  
Vol 60 (4) ◽  
pp. 355-364 ◽  
Author(s):  
Jonas Konn ◽  
Lari Vähäsalo ◽  
Andrey Pranovich ◽  
Bjarne Holmbom

Abstract De-esterification and sulfonation reactions, which create new anionic groups in the middle lamella and primary wall layers, are the key chemical reactions in chemithermomechanical pulping. The effects of these reactions on the resulting fibre dimensions, refining energy demand, hand-sheet bulk and strength properties were assessed by laboratory-scale chemical pre-treatments and refining of Norway spruce chips. After pre-treatments with alkaline, sulfite, alkaline sulfite and alkaline peroxide liquors, a Wing defibrator-type batch refiner was used. The refining energy was measured. The degree of alkaline hydrolysis of acetyl and methyl ester groups in galactoglucomannans (GGMs) and pectins, and the degree of lignin sulfonation were determined. Hand-sheets were prepared and their physical properties were tested. The data were subjected to multivariate analysis and the order of significance of the chemical reactions towards pulp and paper properties was estimated. Chemical pre-treatments were found to increase the fibre length and the energy demand considerably. The fibre length and width after refining were strongly influenced by lignin sulfonation and pectin demethylation. GGM deacetylation had little influence on preserving the fibre dimensions in CTMP refining. The bulk, on the other hand, was highly influenced by GGM deacetylation. Peroxide reactions in alkaline peroxide treatments had no effect on the pulp and paper properties.


Sign in / Sign up

Export Citation Format

Share Document