scholarly journals Effect of Irrigation Systems, Pulse Irrigation Technique and Cobalt Application on Productivity and Water use Efficiency of Tomato Plants Grown in New Reclaimed Soil

2017 ◽  
Vol 47 (6-2) ◽  
pp. 583-601
Author(s):  
Lucas Baiochi Riboldi ◽  
Rafaella Zanetti Dias ◽  
Paulo Roberto de Camargo e Castro ◽  
Sérgio Tonetto de Freitas

Agriculture ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 187 ◽  
Author(s):  
Eros Borsato ◽  
Marco Martello ◽  
Francesco Marinello ◽  
Lucia Bortolini

Water scarcity is worsened by climate change. Water savings can be reached by improving irrigation efficiency both on farm and on water supply. To do that, the choice of the best irrigation technology is not always straightforward, because farmers need to renew and implement farm infrastructures for irrigation. This study compares three irrigation systems, one drip irrigation and two sprinkler (center pivot and hose-reel) systems, on environmental, economic, and energetic performance under irrigated and non-irrigated maize cropping. The study combines impact and efficiency indicators, addressing a sustainability analysis for the irrigation practice under the three different irrigation systems. The sustainability for the irrigation systems was assessed using water-related indicators (water use efficiency, irrigation water use efficiency, and water footprint), biomass (crop growth rate, relative growth rate, harvest index, and yield response factor), and energy indicators (energy footprint, performance, and energy cost footprint) for the environmental aspect; and the economic-based indicators (water productivity and economic water footprint) for the economic aspect. Main results address the center pivot system as the best solution for irrigation practice since it demonstrated higher economic and environmental performance. Moreover, maize under the pivot system allowed a higher biomass production, economic benefits, and water use efficiency.


2004 ◽  
Vol 44 (2) ◽  
pp. 131 ◽  
Author(s):  
C. J. Linehan ◽  
D. P. Armstrong ◽  
P. T. Doyle ◽  
F. Johnson

Water use efficiency (WUE) in irrigated dairy systems has been defined, in this paper, as the amount of milk (kg milk fat plus protein) produced from pasture per megalitre of water (irrigation plus effective rainfall). A�farm survey was conducted for the 1997–98 and 1998–99 seasons in the Goulburn Irrigation System (GIS) and Murray Irrigation System (MIS) when the irrigation water allocated to irrigators in the GIS was low (100–120% of water right compared with the MIS which was 130 and 200% of water right). These data were analysed in conjunction with information collected on the same farms in the 1994–95 and 1995–96 seasons when the irrigation water allocated to irrigators in both systems was above 150% of water right (Armstrong et al. 1998, 2000). The aim of the survey was to determine if the management decisions made by dairy farmers in seasons of low irrigation water allocations had an impact on WUE.Milk production averaged across the 2 irrigation systems increased significantly over the 5-year period (57 540–75 040 kg milk fat + protein per farm). Over the same period the amount of irrigation water applied (GIS�7.6 ML/ha, MIS 9.2 ML/ha) and the milking area (GIS 72 ha, MIS 73 ha) remained constant. The amount of concentrates fed per cow (GIS 650–1100 kg DM, MIS 480–860 kg DM) and per farm (GIS 119–228 t DM, MIS�72–157 t DM) increased, but pasture consumption (GIS 8.9–9.5 t DM/ha, MIS 9.1–9.7 t DM/ha) did not increase significantly over the survey period. Therefore, the increase in milk production appeared to come primarily from an increase in supplementary feeding rather than an increase in pasture consumption, resulting in no significant change in WUE in either system (GIS 66 kg milk fat + protein/ML, MIS 61 kg milk fat + protein/ML).The survey results indicate that despite varying water allocations in the 2 major irrigation systems in northern Victoria, milk production on farms in both systems increased while changes in WUE could not be detected by the methods used. This suggests tactical options to increase WUE in response to short-term changes in water allocation were either difficult to implement or not a priority in a business sense.


Author(s):  
Raj Pal Meena ◽  
R. K. Sharma ◽  
R. S. Chhokar ◽  
Subhash Chander ◽  
S. C. Tripathi ◽  
...  

2011 ◽  
Vol 59 (3) ◽  
pp. 275-284 ◽  
Author(s):  
S. Bencze ◽  
I. Keresztényi ◽  
B. Varga ◽  
B. Kőszegi ◽  
K. Balla ◽  
...  

The effect of CO2 enrichment on the rate of photosynthesis and the water use efficiency (WUE) of young pepper and tomato plants was studied in the phytotron. A CO2 level of 1000 ppm significantly increased the net assimilation rate in the upper foliage, while the increase was even more considerable in the lower layers of the canopy, with values of up to 100%. The 1500 ppm CO2 level caused a further substantial increase in CO2 assimilation and at least doubled (in tomato) or tripled (in pepper) the water use efficiency on a leaf area basis compared to the ambient values. Although the response in terms of photosynthesis and WUE was not variety-specific, there were differences between the pepper hybrids in the biomass components, exceeding 100% for the total biomass at the 1500 ppm CO2 level. In tomato, however, there was no significant variation in the total biomass of the three hybrids investigated in this early phase of development at either CO2 level.


2013 ◽  
Vol 38 (2) ◽  
pp. 207-215
Author(s):  
AHMZ Ali ◽  
MK Rahman

An experiment was conducted in wooden boxes to evaluate water use efficiency, biomass production, nitrogen and potassium uptake and yield of tomato plants (Lycopersicon esculentum) grown under flood irrigation (FI) and surface drip irrigation (SDI). Leaf area, leaf area index, biomass production and yield of tomato plants were significantly (P<0.05) higher in SDI than FI treatment. Biomass production (g/plant) was 53.3 and 42.2 and yield of tomato (kg/plant) was 1.27 and 0.99 in SDI and FI treatments, respectively. Surface drip irrigation increased water use efficiency (Kgm-3) of tomato plants by two fold (37.88) compared to flood irrigation ( 19.88). Significantly (P<0.05) higher concentrations of nitrogen in leaf (3.22%) and stem (2.62 %) were measured for tomato plants grown under SDI than FI (2.63 and 2.19 %). Potassium concentrations on the other hand, showed no significant differences. DOI: http://dx.doi.org/10.3329/jasbs.v38i2.15611 J. Asiat. Soc. Bangladesh, Sci. 38(2): 207-215, December 2012


Sign in / Sign up

Export Citation Format

Share Document