scholarly journals Water Use Efficiency of Acacia seyal (Del.) in extreme arid environment prevails in South-Western Desert, Egypt

2020 ◽  
Vol 1 (1) ◽  
pp. 28-37
Author(s):  
Usama A.A Radwan ◽  
Tarek A.A. Radwan ◽  
Esraa K. Abouelkasim
2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


1991 ◽  
Vol 27 (4) ◽  
pp. 351-364 ◽  
Author(s):  
J. Amir ◽  
J. Krikun ◽  
D. Orion ◽  
J. Putter ◽  
S. Klitman

2021 ◽  
Vol 243 ◽  
pp. 106483 ◽  
Author(s):  
Yufeng Zou ◽  
Qaisar Saddique ◽  
Ajaz Ali ◽  
Jiatun Xu ◽  
Muhammad Imran Khan ◽  
...  

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 753C-753
Author(s):  
Ahmed ElObeidy*

One of the major steps in responding to imminent water shortages in the Middle East is improving water use efficiency. Drought-resistant crops would be an effective technology to curb rising demands of water. Columnar Cactus species characteristics fit with most of the requirements of a drought tolerant crop with very high water-use efficiency. Cereus cacti have physiological and morphological methods of exploiting environments that would soon desiccate other plants. Four Cereus species were introduced into UAE deserts and could be ideal for establishing crop plantations in the arid environment. The introduced fruiting cacti are Cereus hexagonus, C. pachanoi, C. peruvianus, and C. validus. Plants were propagated by cuttings in the greenhouse. Cuttings developed roots within 2*&8211;4 weeks of planting. The propagated plants were acclimatized and transplanted into the field in the desert. C. peruvianus was the most promising in the new environment in terms of its high adaptability and healthy growth in the new environment. C. pachanoi grew very fast, averaging up to a fifteen centimeter a month of new growth. C. pachanoi was recommended as a rootstock for other species. C. validus could not survive the new environment.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1344
Author(s):  
Juan Enciso ◽  
Jose C. Chavez ◽  
Girisha Ganjegunte ◽  
Samuel D. Zapata

Water availability and supply are critical factors in the production of bioenergy. Dry biomass productivity and water use efficiency (WUE) of two biomass sorghum cultivars (Sorghum bicolor (L.) Moench) were studied in two different climatic locations during 2014 and 2015. The objective of this field study was to evaluate the dry biomass productivity and water use efficiency of two energy sorghum cultivars grown in two different climatic environments: one at Pecos located in the Chihuahuan Desert and a second one located at Weslaco in the Lower Rio Grande bordering Mexico and with a semiarid environment. There were significant differences between locations in dry biomass and WUE. Dry biomass productivity ranged from 22.4 to 31.9 Mg ha−1 in Weslaco, while in Pecos it ranged from 7.4 to 17.6 Mg ha−1. Even though it was possible to produce energy sorghum biomass in an arid environment with saline-sodic soils and saline irrigation, the energy sorghum dry biomass yield was reduced more than 50% in the arid environment compared to production in a semiarid environment with good soil and water quality, and it required approximately twice as much water. Harsh production conditions combined with low energy prices resulted in negative net returns for all treatments. However, a moderate increase in ethanol price could make the semiarid cropland of Texas an economically feasible feedstock production location.


2021 ◽  
Vol 21 (1) ◽  
pp. 89-92
Author(s):  
RACHANA DUBEY ◽  
HIMANSHU PATHAK ◽  
SANATAN PRADHAN ◽  
BIDISHA CHAKRABARTI ◽  
N. MANIKANDAN

Sign in / Sign up

Export Citation Format

Share Document