scholarly journals Introducing Cereus into an Arid Region as a New Fruit Crop

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 753C-753
Author(s):  
Ahmed ElObeidy*

One of the major steps in responding to imminent water shortages in the Middle East is improving water use efficiency. Drought-resistant crops would be an effective technology to curb rising demands of water. Columnar Cactus species characteristics fit with most of the requirements of a drought tolerant crop with very high water-use efficiency. Cereus cacti have physiological and morphological methods of exploiting environments that would soon desiccate other plants. Four Cereus species were introduced into UAE deserts and could be ideal for establishing crop plantations in the arid environment. The introduced fruiting cacti are Cereus hexagonus, C. pachanoi, C. peruvianus, and C. validus. Plants were propagated by cuttings in the greenhouse. Cuttings developed roots within 2*&8211;4 weeks of planting. The propagated plants were acclimatized and transplanted into the field in the desert. C. peruvianus was the most promising in the new environment in terms of its high adaptability and healthy growth in the new environment. C. pachanoi grew very fast, averaging up to a fifteen centimeter a month of new growth. C. pachanoi was recommended as a rootstock for other species. C. validus could not survive the new environment.

2016 ◽  
Vol 186 ◽  
pp. 66-77 ◽  
Author(s):  
Judy A. Tolk ◽  
Steven R. Evett ◽  
Wenwei Xu ◽  
Robert C. Schwartz

2014 ◽  
Vol 50 (4) ◽  
pp. 549-572 ◽  
Author(s):  
V. S. RATHORE ◽  
N. S. NATHAWAT ◽  
B. MEEL ◽  
B. M. YADAV ◽  
J. P. SINGH

SUMMARYThe choice of an appropriate cropping system is critical to maintaining or enhancing agricultural sustainability. Yield, profitability and water use efficiency are important factors for determining suitability of cropping systems in hot arid region. In a two-year field experiment (2009/10–2010/11) on loam sandy soils of Bikaner, India, the production potential, profitability and water use efficiency (WUE) of five cropping systems (groundnut–wheat, groundnut–isabgol, groundnut–chickpea, cluster bean–wheat and mung bean–wheat) each at six nutrient application rate (NAR) i.e. 0, 25, 50, 75, 100% recommended dose of N and P (NP) and 100% NP + S were evaluated. The cropping systems varied significantly in terms of productivity, profitability and WUEs. Averaged across nutrient application regimes, groundnut–wheat rotation gave 300–1620 kg ha−1 and 957–3365 kg ha−1 higher grain and biomass yields, respectively, than other cropping systems. The mean annual net returns were highest for the mung bean–wheat system, which returned 32–57% higher net return than other cropping systems. The mung bean–wheat and cluster bean–wheat systems had higher WUE in terms of yields than other cropping systems. The mung bean–wheat system recorded 35–63% higher WUE in monetary terms compared with other systems. Nutrients application improved yields, profit and WUEs of cropping systems. Averaged across years and cropping systems, the application of 100% NP improved grain yields, returns and WUE by 1.7, 3.9 and 1.6 times than no application of nutrients. The results suggest that the profitability and WUEs of crop production in this hot arid environment can be improved, compared with groundnut–wheat cropping, by substituting groundnut by mung bean and nutrients application.


1991 ◽  
Vol 27 (4) ◽  
pp. 351-364 ◽  
Author(s):  
J. Amir ◽  
J. Krikun ◽  
D. Orion ◽  
J. Putter ◽  
S. Klitman

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Dario Mantovani ◽  
Maik Veste ◽  
Dirk Freese

Black locust (Robinia pseudoacaciaL.) is a drought-tolerant fast growing tree, which could be an alternative to the more common tree species used in short-rotation coppice on marginal land. The plasticity of black locust in the form of ecophysiological and morphological adaptations to drought is an important precondition for its successful growth in such areas. However, adaptation to drought stress is detrimental to primary production. Furthermore, the soil water availability condition of the initial stage of development may have an impact on the tree resilience. We aimed to investigate the effect of drought stress applied during the resprouting on the drought tolerance of the plant, by examining the black locust growth patterns. We exposed young trees in lysimeters to different cycles of drought. The drought memory affected the plant growth performance and its drought tolerance: the plants resprouting under drought conditions were more drought tolerant than the well-watered ones. Black locust tolerates drastic soil water availability variations without altering its water use efficiency (2.57 g L−1), evaluated under drought stress. Due to its constant water use efficiency and the high phenotypic plasticity, black locust could become an important species to be cultivated on marginal land.


2021 ◽  
Vol 243 ◽  
pp. 106483 ◽  
Author(s):  
Yufeng Zou ◽  
Qaisar Saddique ◽  
Ajaz Ali ◽  
Jiatun Xu ◽  
Muhammad Imran Khan ◽  
...  

2000 ◽  
Vol 40 (5) ◽  
pp. 643 ◽  
Author(s):  
D. P. Armstrong ◽  
J. E. Knee ◽  
P. T. Doyle ◽  
K. E. Pritchard ◽  
O. A. Gyles

A survey of 170 randomly selected, irrigated, dairy farms in northern Victoria and 9 in southern New South Wales was conducted to examine and benchmark the key factors influencing water-use efficiency. Water-use efficiency was defined as the amount of milk (kg milk fat plus protein) produced from pasture per megalitre of water (irrigation plus effective rainfall). Information on water-use, milk production, supplementary feeding, farm size and type, pasture management, and irrigation layout and management was collected for each farm by personal interview for the 1994–95 and 1995–96 seasons. The farms were ranked in the order of water-use efficiency with the average farm compared with the highest and lowest 10% of farms. The range in water-use efficiency was 25–115 kg milk fat plus protein/ML, with the highest 10% averaging 94 kg/ML and the lowest 10% averaging 35 kg/ML. The large range in water-use efficiency indicated potential for substantial improvement on many farms. The high water-use efficiency farms, when compared with the low group: (i) produced a similar amount of milk from less water (387 v. 572 ML) (P<0.05), less land (48 v. 83 ha) (P< 0.05) and a similar number of cows (152 v. 143 cows); (ii) had higher estimated pasture consumption per hectare (11.5 v. 5.5 t DM/ha) (P<0.01) and per megalitre (1.0 v. 0.5 t DM/ML) (P<0.01); (iii) had higher stocking rates (3.2 v. 1.8 cows/ha) (P<0.01); (iv) used higher rates of nitrogen fertiliser (59 v. 18 kg N/ha.year) (P<0.05) and tended to use more phosphorus fertiliser (64 v. 34 kg P/ha.year) (P<0.10); (v) used similar levels of supplementary feed (872 v. 729 kg concentrates/cow); (vi) had higher milk production per cow (396 v. 277 kg fat plus protein) (P<0.05); and (vii) directed a higher proportion of the estimated energy consumed by cows into milk production (53 v. 46%) (P<0.05). The survey data confirmed that irrigated dairy farm systems are complex and variable. For example, the amount of feed brought in from outside the milking area varied from 0 to 74% of the estimated total energy used by a milking herd. There was a large range in the level of supplement input amongst the farms in the high water-use efficiency group, and in the low water-use efficiency group. This indicates that the management of the farming system has a greater impact on the efficiency of water-use on irrigated dairy farms, than the type of system. The data from the survey provide information for individual farms, a measure of the water-use efficiency of the industry, and an indication of the quality of regional land and water resources.


2007 ◽  
Vol 57 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Hong-Xing Cao ◽  
Zheng-Bin Zhang ◽  
Ping Xu ◽  
Li-Ye Chu ◽  
Hong-Bo Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document