ALGAE AND PROGRESS IN PHOTOSYNTHESIS RESEARCH I-Oxygen evolution and carbon fixation

2000 ◽  
Vol 1 (1) ◽  
pp. 235-244
Author(s):  
Ahmed Hamad ◽  
Mohamed Osman ◽  
Refaat Abdel-Basset
Polar Biology ◽  
1987 ◽  
Vol 8 (2) ◽  
pp. 103-113 ◽  
Author(s):  
Trevor Platt ◽  
William G. Harrison ◽  
Edward P. W. Horne ◽  
Brian Irwin

Author(s):  
Gunnel Karlsson ◽  
Jan-Olov Bovin ◽  
Michael Bosma

RuBisCO (D-ribulose-l,5-biphosphate carboxylase/oxygenase) is the most aboundant enzyme in the plant cell and it catalyses the key carboxylation reaction of photosynthetic carbon fixation, but also the competing oxygenase reaction of photorespiation. In vitro crystallized RuBisCO has been studied earlier but this investigation concerns in vivo existance of RuBisCO crystals in anthers and leaves ofsugarbeets. For the identification of in vivo protein crystals it is important to be able to determinethe unit cell of cytochemically identified crystals in the same image. In order to obtain the best combination of optimal contrast and resolution we have studied different staining and electron accelerating voltages. It is known that embedding and sectioning can cause deformation and obscure the unit cell parameters.


Nanoscale ◽  
2020 ◽  
Vol 12 (39) ◽  
pp. 20413-20424
Author(s):  
Riming Hu ◽  
Yongcheng Li ◽  
Fuhe Wang ◽  
Jiaxiang Shang

Bilayer single atom catalysts can serve as promising multifunctional electrocatalysts for the HER, ORR, and OER.


2019 ◽  
Author(s):  
Seoin Back ◽  
Kevin Tran ◽  
Zachary Ulissi

<div> <div> <div> <div><p>Developing active and stable oxygen evolution catalysts is a key to enabling various future energy technologies and the state-of-the-art catalyst is Ir-containing oxide materials. Understanding oxygen chemistry on oxide materials is significantly more complicated than studying transition metal catalysts for two reasons: the most stable surface coverage under reaction conditions is extremely important but difficult to understand without many detailed calculations, and there are many possible active sites and configurations on O* or OH* covered surfaces. We have developed an automated and high-throughput approach to solve this problem and predict OER overpotentials for arbitrary oxide surfaces. We demonstrate this for a number of previously-unstudied IrO2 and IrO3 polymorphs and their facets. We discovered that low index surfaces of IrO2 other than rutile (110) are more active than the most stable rutile (110), and we identified promising active sites of IrO2 and IrO3 that outperform rutile (110) by 0.2 V in theoretical overpotential. Based on findings from DFT calculations, we pro- vide catalyst design strategies to improve catalytic activity of Ir based catalysts and demonstrate a machine learning model capable of predicting surface coverages and site activity. This work highlights the importance of investigating unexplored chemical space to design promising catalysts.<br></p></div></div></div></div><div><div><div> </div> </div> </div>


2020 ◽  
Author(s):  
Ding Yuan ◽  
Yuhai Dou ◽  
Chun-Ting He ◽  
Linping Yu ◽  
Li Xu ◽  
...  

1980 ◽  
Vol 45 (8) ◽  
pp. 2272-2282 ◽  
Author(s):  
Jan Balej ◽  
Martin Kadeřávek

Preparation of peroxodisulphates by electrolysis of mixed solutions of sulphuric acid and various sulphates was studied at low degree of conversion; the partial polarization curves of peroxodisulphate formation and of oxygen evolution obtained from the overall anodic polarization curves and current yields of the principal anodic processes were examined. The mechanism of the effect of various cations on the rate of anodic formation of peroxodisulfates is discussed.


Sign in / Sign up

Export Citation Format

Share Document