scholarly journals Optimization of COD Removal from Pharmaceutical Wastewater by Electrocoagulation process using Response Surface Methodology (RSM)

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Riham Najeeb ◽  
Ali Abbar
Author(s):  
SHANKAR B. UMA ◽  
Lakshmi Chandana M.V.V. ◽  
SRIDEVI V ◽  
LAKSHMI L. NEELIMA CHANDRA ◽  
◽  
...  

2016 ◽  
Vol 74 (3) ◽  
pp. 564-579 ◽  
Author(s):  
Ceyhun Akarsu ◽  
Yasin Ozay ◽  
Nadir Dizge ◽  
H. Elif Gulsen ◽  
Hasan Ates ◽  
...  

Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box–Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5–15 V), initial pH (4.5–8.0) and time (30–90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P > 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R2 and Radj2 values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R2 values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage–time and pH–time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.


2019 ◽  
Vol 80 (4) ◽  
pp. 685-694 ◽  
Author(s):  
Maryam Dolatabadi ◽  
Saeid Ahmadzadeh

Abstract Presence of emerging contaminants such as pharmaceutical products in aquatic environments has received high concern due to their undesirable effect on wildlife and human health. Current work deals with developing a treatment model based on the electro- Fenton (EF) process for efficient removal of metformin (MET) from an aqueous medium. The obtained experimental results revealed that over the reaction time of 10 min and solution pH of 3, the maximum removal efficiency of 98.57% is achieved where the value of MET initial concentration, current density, and H2O2 dosage is set at 10 mg.L−1, 6 mA.cm−2, and 250 μL.L−1, respectively, which is in satisfactory agreement with the predicted removal efficiency of 98.6% with the desirability of 0.99. The presence of radical scavengers throughout the mineralization of MET under the EF process revealed that the generation of •OH radicals, as the main oxidative species, controlled the degradation mechanism. The obtained kinetics data best fitted to the first order kinetic model with the rate constant of 0.4224 min−1 (R2 = 0.9940). The developed treatment process under response surface methodology (RSM) was employed for modeling the obtained experimental data and successfully applied for efficient removal of the MET contaminant from pharmaceutical wastewater as an adequate and cost-effective approach.


2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.


2021 ◽  
Vol 9 (2) ◽  
pp. 470-479

The removal percentage of color from institutional wastewater was studied using an electrocoagulation process with different electrode combination at the anode and cathode. This was done by considering operational parameters such as pH at (3, 6 and 9), current at (0.03A, 0.06A and 0.09A) and reaction time at (20, 40 and 60 minutes). When electrode combined in the form of Al-Al (anode-Cathode/Cathode-Anode) and Fe-Fe (anode-Cathode/Cathode-Anode) the percentage removal of color was up to 95.50% and 97.24% respectively. On the other hand around 98.03% and 91.95% of color was removed when Al-Fe (Anode-Cathode) and Fe-Al (Anode-Cathode) combined at pH 9 and 60 minutes of reaction time respectively. Central composite design from response surface methodology was used up to analysis the statistical and mathematical data based on experimental results such as the model was significant for all electrode combinations. Similarly a quadratic model was used for further study of operational effects on the removal (%) of color from institutional wastewater. The value of coefficient of the determination (R2) also indicated the model was a good fit as well as optimization was done by Response Surface Methodology.


2020 ◽  
Vol 26 (9) ◽  
pp. 11-23
Author(s):  
Rand Shakir Mahmood ◽  
Nawar O.A. Al-Musawi

The electrocoagulation process became one of the most important technologies used for water treatment processes in the last few years. It’s the preferred method to remove suspended solids and heavy metals from water for treating drinking water and wastewater from textile, diary, and electroplating factories. This research aims to study the effect of using the electrocoagulation process with aluminum electrodes on the removal efficiency of suspended solids and turbidity presented in raw water and optimizing by the response surface methodology (RSM). The most important variables studied in this research included electrode spacing, the applied voltage, and the operating time of the electrocoagulation process. The samples were taken from the Al Qadisiyiah water treatment plant. The treatment set up was in a batch mode; two parallel plates of aluminum were used as electrodes. Experimental results showed that the maximum removal efficiency of 96% for turbidity and 97% for TSS were obtained at operating time 60 minutes, voltage 30 V, and electrode spacing 1.7cm. Two models for predicting removal efficiency obtained, the first model was for turbidity with a correction factor of 94.7%, and the second one was for the TSS with a correction factor of 94.85%.


2019 ◽  
Vol 79 (7) ◽  
pp. 1297-1308
Author(s):  
Vianey Ariadna Burboa-Charis ◽  
Eddy Jonatan Moreno-Román ◽  
Juan Antonio Vidales Contreras ◽  
Celestino García-Gómez

Abstract The presence of heavy metals in the environment has increased, and cadmium (Cd) and zinc (Zn) are considered to be among the most dangerous. An upflow Al-electrocoagulation reactor was used to remove Cd2+ and Zn2+ ions from aqueous media. The system consisted of perforated aluminum circular electrodes for fluid distribution with elimination of external agitation. The effect of different parameters, i.e. current intensity, electrolysis time, concentration of Cd2+ and Zn2+ ions and electrolytic support dose were optimized by response surface methodology. The results indicated that increasing the current intensity and the electrolysis time had a positive effect on the elimination efficiency of the pollutant ions. Likewise, increasing the dose of electrolytic support and decreasing the concentration of the pollutants improved the efficiency of the system. The optimal results were: current intensity of 0.4 A, electrolysis time of 40 min, ion concentration of 44.6 mg·L−1 and electrolytic support dose of 0.56 mg·L−1, with the maximum elimination percentages of 96 ± 3.8% and 96 ± 2.7% for Cd2+ and Zn2+, respectively. This study showed that the electrocoagulation process in an upflow electrocoagulation reactor could be successfully applied to remove pollutants from water.


2018 ◽  
Vol 108 ◽  
pp. 144-151
Author(s):  
Mei-Hui Chung ◽  
Chih-Ta Wang ◽  
Jian-Wen Wang ◽  
Wei-Lung Chou ◽  
Yi-Ming Kuo

Sign in / Sign up

Export Citation Format

Share Document