scholarly journals Optimization of electrocoagulation of instant coffee production wastewater using the response surface methodology

2017 ◽  
Vol 19 (2) ◽  
pp. 67-71 ◽  
Author(s):  
Ha Manh Bui

Abstract The COD removal efficiency from an instant coffee processing wastewater using electrocoagulation was investigated. For this purpose, the response surface methodology was employed, using central composing design to optimize three of the most important operating variables, i.e., electrolysis time, current density and initial pH. The results based upon statistical analysis showed that the quadratic models for COD removal were significant at very low probability value (<0.0001) and high coefficient of determination (R2 = 0.9621) value. The statistical results also indicated that all the three variables and the interaction between initial pH and electrolysis time were significant on COD abatement. The maximum predicted COD removal using the response function reached 93.3% with electrolysis time of 10 min, current density of 108.3 A/m2 and initial pH of 7.0, respectively. The removal efficiency value was agreed well with the experimental value of COD removal (90.4%) under the optimum conditions.

2016 ◽  
Vol 74 (3) ◽  
pp. 564-579 ◽  
Author(s):  
Ceyhun Akarsu ◽  
Yasin Ozay ◽  
Nadir Dizge ◽  
H. Elif Gulsen ◽  
Hasan Ates ◽  
...  

Marine pollution has been considered an increasing problem because of the increase in sea transportation day by day. Therefore, a large volume of bilge water which contains petroleum, oil and hydrocarbons in high concentrations is generated from all types of ships. In this study, treatment of bilge water by electrocoagulation/electroflotation and nanofiltration integrated process is investigated as a function of voltage, time, and initial pH with aluminum electrode as both anode and cathode. Moreover, a commercial NF270 flat-sheet membrane was also used for further purification. Box–Behnken design combined with response surface methodology was used to study the response pattern and determine the optimum conditions for maximum chemical oxygen demand (COD) removal and minimum metal ion contents of bilge water. Three independent variables, namely voltage (5–15 V), initial pH (4.5–8.0) and time (30–90 min) were transformed to coded values. The COD removal percent, UV absorbance at 254 nm, pH value (after treatment), and concentration of metal ions (Ti, As, Cu, Cr, Zn, Sr, Mo) were obtained as responses. Analysis of variance results showed that all the models were significant except for Zn (P &gt; 0.05), because the calculated F values for these models were less than the critical F value for the considered probability (P = 0.05). The obtained R2 and Radj2 values signified the correlation between the experimental data and predicted responses: except for the model of Zn concentration after treatment, the high R2 values showed the goodness of fit of the model. While the increase in the applied voltage showed negative effects, the increases in time and pH showed a positive effect on COD removal efficiency; also the most effective linear term was found as time. A positive sign of the interactive coefficients of the voltage–time and pH–time systems indicated synergistic effect on COD removal efficiency, whereas interaction between voltage and pH showed an antagonistic effect.


2020 ◽  
Vol 82 (9) ◽  
pp. 1950-1960
Author(s):  
Yihui Zhou ◽  
Tao Xu ◽  
Jinhua Ou ◽  
Gege Zou ◽  
Xiping Lei ◽  
...  

Abstract A novel sinusoidal alternating current coagulation (SACC) technique was used to remove the Zn2+ from wastewater in the present study. The response surface methodology was used to analyze the effect of current density, time, initial pH and initial Zn2+ concentration in order to obtain the optimum removal efficiency and to lower energy consumption. The results show that SACC with a current density of 0.31 A·m−2 applied to treat wastewater containing 120 mg·dm−3 Zn2+ at pH = 9 for 21.3 min can achieve a removal efficiency of Zn2+ of 98.80%, and the energy consumption is 1.147 kWh·m−3. The main component of flocs produced in SACC process is Fe5O7OH·4H2O (HFO). Large specific surface area and good adsorption performance of HFO are demonstrated. There is strong interaction between Zn2+ and HFO. Zn2+ is adsorbed and trapped by HFO and then co-precipitated. Freundlich adsorption isotherm model and pseudo-second order kinetics model explained the Zn2+ adsorption behavior well. The Zn2+ adsorption on HFO is an endothermic and spontaneous process.


Author(s):  
Hariraj Singh ◽  
Brijesh Kumar Mishra ◽  
Aditya Prakash Yadav

The aim of the present work was to investigate the removal of phenol from a synthetic solution by the enhanced electrochemical oxidation process using graphite electrodes. Central composite design (CCD) and Box Behnken Design (BBD) under Response Surface Methodology (RSM) tool were used to investigate the effects of major operating variables viz. Current density (mA/ cm2): (2.27 to 4.54), pH: (5.5 to 7.5) and electrolysis time (min): (30 to 90). The predicted values of BBD responses obtained using RSM were more significant than the CCD model in terms of reaction time, whereas under the desirability test CCD model was found more appropriate in terms of phenol removal and power consumption. The optimal result shows that the CCD model predicted and experimental values of phenol removal and power consumption are 92.87 %; 0.866 kWh/m3 and 86.34 %; 1.12 kWh/m3 respectively under optimized variable conditions, current density: 2.78 mA/cm2, pH: 6.98 and electrolysis time: 88.02 minutes at high desirability level.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 835
Author(s):  
Sharon Chakawa ◽  
Mujahid Aziz

Electrochemical oxidation (EO) investigated chemical oxygen demand (COD) subtraction from petroleum refinery wastewater (PRW) as a capable remediation process. Titanium substrates coated with iridium–tantalum oxide mixtures (Ti/IrO2–Ta2O5) were used as the dimensional stable anode (DSA). The Box-Behnken Design (BBD), a statistical experimental design and response surface methodology (RSM), was used to matrix the current density, temperature, and electrolyte (NaCl) concentration variables, with COD removal efficiency as the response factor. A second-order verifiable relationship between the response and independent variables was derived where the analysis of variance displayed a high coefficient of determination value (R2 = 0.9799). The predicted values calculated with the model equations were very close to the experimental values where the model was highly significant. Based on the BBD for current density, the optimum process conditions, temperature and electrolyte (NaCl) concentration were 7.5 mA/cm2, 42 °C and 4.5 g/L, respectively. They were resulting in a COD removal efficiency of 99.83% after a 12-hour EO period.


2015 ◽  
Vol 73 (11) ◽  
pp. 2572-2582 ◽  
Author(s):  
Helder Pereira de Carvalho ◽  
Jiguo Huang ◽  
Meixia Zhao ◽  
Gang Liu ◽  
Xinyu Yang ◽  
...  

In this study, response surface methodology (RSM) model was applied for optimization of Basic Red 2 (BR2) removal using electrocoagulation/eggshell (ES) coupling process in a batch system. Central composite design was used to evaluate the effects and interactions of process parameters including current density, reaction time, initial pH and ES dosage on the BR2 removal efficiency and energy consumption. The analysis of variance revealed high R2 values (≥85%) indicating that the predictions of RSM models are adequately applicable for both responses. The optimum conditions when the dye removal efficiency of 93.18% and energy consumption of 0.840 kWh/kg were observed were 11.40 mA/cm2 current density, 5 min and 3 s reaction time, 6.5 initial pH and 10.91 g/L ES dosage.


Author(s):  
Negar Jafari ◽  
Afshin Ebrahimi ◽  
Karim Ebrahimpour ◽  
Ali Abdolahnejad

Introduction: Microcystin-leucine arginine (MC-LR) is a toxin with harmful effects on the liver, kidney, heart, and gastrointestinal tract. So, effective removal of MC-LR from water resources is of great importance. The aim of this study was to remove microcystin-LR (MC-LR) from aqueous solution by Titanium Dioxide (TiO2). Materials and Methods: In the present study, TiO2, as a semiconductor, was used for photodegradation of MC-LR under ultraviolet light (UV). The Response Surface Methodology was applied to investigate the effects of operating variables such as pH (A), contact time (B), and catalyst dose (B) on the removal of MC-LR. The MC-LR concentration was measured by high-performance liquid chromatography (HPLC). Results: The results showed that single variables such as A, B, and C had significant effects on MC-LR removal (pvalue < 0.05). In other words, increase of the contact time and catalyst dose had a positive effect on enhancing the removal efficiency of MC-LR, but the effect of pH was negative. The analysis of variance showed that BC, A2, and C2 variables had a significant effect on the MC-LR removal (pvalue < 0.05). Finally, the maximum removal efficiency of MC-LR was 95.1%, which occurred at pH = 5, contact time = 30 minutes, and catalyst dose = 1 g/l. Conclusion: According to the findings, TiO2, as a photocatalyst, had an appropriate effect on degradation of the MC-LR.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
P. Arulmathi ◽  
G. Elangovan ◽  
A. Farjana Begum

Distillery industry is recognized as one of the most polluting industries in India with a large amount of annual effluent production. In this present study, the optimization of electrochemical treatment process variables was reported to treat the color and COD of distillery spent wash using Ti/Pt as an anode in a batch mode. Process variables such as pH, current density, electrolysis time, and electrolyte dose were selected as operation variables and chemical oxygen demand (COD) and color removal efficiency were considered as response variable for optimization using response surface methodology. Indirect electrochemical-oxidation process variables were optimized using Box-Behnken response surface design (BBD). The results showed that electrochemical treatment process effectively removed the COD (89.5%) and color (95.1%) of the distillery industry spent wash under the optimum conditions: pH of 4.12, current density of 25.02 mA/cm2, electrolysis time of 103.27 min, and electrolyte (NaCl) concentration of 1.67 g/L, respectively.


2019 ◽  
Vol 9 (3) ◽  
pp. 212-221
Author(s):  
Fatima Erraib ◽  
Khalid El Ass

Box–Behnken response surface design was successfully employed to optimize and study the olive mill wastewater (OMW) treatment by electrocoagulation (EC) process. The influence of four decisive factors were modelled and optimized to increase the removal of chemical oxygen demand (COD). The Box–Behnken design (BBD) results were analyzed and the second-order polynomial model was developed using multiple regression analysis. The model developed from the experimental design was predictive and a good fit with the experimental data with a high coefficient of determination (R2 ) value (more than 0.98). The optimal operating conditions based on Derringer’s desired function methodology are found to be; initial pH of 4.4, a current density of 27.6 mA/cm2 , electrolysis time of 14.1 min, and chloride concentration of 3.2 g/L. Under these conditions, the predicted COD removal efficiency was found to be 67.14% with a desirability value of 0.94. These experimental results were confirmed by validation experiments and proved that Box–Behnken design and response surface methodology could efficiently be applied for modelling of COD removal from OMW.


2019 ◽  
Vol 14 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Y. Williams ◽  
M. Basitere ◽  
S. K. O. Ntwampe ◽  
M. Ngongang ◽  
M. Njoya ◽  
...  

Abstract The poultry slaughterhouse industry consumes a large volume of potable water for bird processing and equipment cleaning, which culminates in the generation of high strength poultry slaughterhouse wastewater (PSW). The wastewater contains high concentrations of organic matter, suspended solids, nitrogen and nutrients. Most poultry slaughterhouses in South Africa (SA) discharge their wastewater into the municipal sewer system after primary treatment. Due to its high strength, PSW does not meet SA's industrial discharge standards. Discharge of untreated PSW to the environment raises environmental health concerns due to pollution of local rivers and fresh water sources, leading to odour generation and the spread of diseases. Thus, the development of a suitable wastewater treatment process for safe PSW discharge to the environment is a necessity. In this study, a biological PSW treatment process using an Expanded Granular Sludge Bed (EGSB) was evaluated. Response surface methodology coupled with central composite design was used to optimize the performance of the EGSB reactor. The dependant variable used for optimization was chemical oxygen demand (COD) removal as a function of two independent variables, hydraulic retention time (HRT) and organic loading rate (OLR). The interactions between HRT, OLR and COD removal were analysed, and a two factorial (2FI) regression was determined as suitable for COD removal modelling. The optimum COD removal of 93% was achieved at an OLR of 2 g-COD/L/d and HRT of 4.8 days. The model correlation coefficient (R2) of 0.980 indicates that it is a good fit and is suitable for predicting the EGSB's COD removal efficiency.


2014 ◽  
Vol 69 (5) ◽  
pp. 1080-1087 ◽  
Author(s):  
Xianzhong Cao ◽  
Huiqing Lou ◽  
Wei Wei ◽  
Lijuan Zhu

In this study, the Box-Benkhen design and response surface method (RSM) were applied to evaluate and optimize the operating variables during the treatment of tetrahydrofuran (THF) wastewater by Fenton process. The four factors investigated were initial pH, Fe2+ dosage, H2O2 dosage and reaction time. Statistical analysis showed the linear coefficients of the four factors and the interactive coefficients such as initial pH/Fe2+ dosage, initial pH/H2O2 dosage and Fe2+ dosage/H2O2 dosage all significantly affected the removal efficiency. The RSM optimization results demonstrated that the chemical oxygen demand (COD) removal efficiency could reach up to 47.8% when initial pH was 4.49, Fe2+ dosage was 2.52 mM, H2O2 dosage was 20 mM and reaction time was 110.3 min. Simultaneously, the biodegradability increased obviously after the treatment. The main intermediates of 2-hydroxytetrahydrofuran, γ-butyrolactone and 4-hydroxybutanoate were separated and identified and then a simple degradation pathway of THF was proposed. This work indicated that the Fenton process was an efficient and feasible pre-treatment method for THF wastewater.


Sign in / Sign up

Export Citation Format

Share Document