scholarly journals Free Serum Testosterone Versus Total Testosterone/Estradiol Ratio in Low Sexual Desire in Old Men

2021 ◽  
Vol 83 (1) ◽  
pp. 1062-1067
Author(s):  
Ahmed SA Abouroab ◽  
Sherif Refaat Ismail ◽  
Hamdy Foad Aly Marzok
2019 ◽  
Vol 16 (7) ◽  
pp. 981-991 ◽  
Author(s):  
Valentin H. Meissner ◽  
Lukas Schroeter ◽  
Frank-Michael Köhn ◽  
Martina Kron ◽  
Michael Zitzmann ◽  
...  

2015 ◽  
Vol 193 (4S) ◽  
Author(s):  
Lucas Regis ◽  
Pol Servian ◽  
Cristian Isalt ◽  
Ana Celma ◽  
Jacques Planas ◽  
...  

2001 ◽  
Vol 71 (5) ◽  
pp. 293-301 ◽  
Author(s):  
Gregory A. Brown ◽  
Matthew D. Vukovich ◽  
Emily R. Martini ◽  
Marian L. Kohut ◽  
Warren D. Franke ◽  
...  

The effectiveness of a nutritional supplement designed to enhance serum testosterone concentrations and prevent the formation of dihydrotestosterone and estrogens from the ingested androgens was investigated in healthy 30- to 59-year old men. Subjects were randomly assigned to consume DION (300 mg androstenedione, 150 mg dehydroepiandrosterone, 540 mg saw palmetto, 300 mg indole-3-carbinol, 625 mg chrysin, and 750 mg Tribulus terrestris per day; n = 28) or placebo (n = 27) for 28 days. Serum free testosterone, total testosterone, androstenedione, dihydrotestosterone, estradiol, prostate-specific antigen (PSA), and lipid concentrations were measured before and throughout the 4-week supplementation period. Serum concentrations of total testosterone and PSA were unchanged by supplementation. DION increased (p < 0.05) serum androstenedione (342%), free testosterone (38%), dihydrotestosterone (71%), and estradiol (103%) concentrations. Serum HDL-C concentrations were reduced by 5.0 mg/dL in DION (p < 0.05). Increases in serum free testosterone (r2 = 0.01), androstenedione (r2 = 0.01), dihydrotestosterone (r2 = 0.03), or estradiol (r2 = 0.07) concentrations in DION were not related to age. While the ingestion of androstenedione combined with herbal products increased serum free testosterone concentrations in older men, these herbal products did not prevent the conversion of ingested androstenedione to estradiol and dihydrotestosterone.


2020 ◽  
Vol 27 (12) ◽  
pp. 1186-1191
Author(s):  
Giuseppe Grande ◽  
Domenico Milardi ◽  
Silvia Baroni ◽  
Andrea Urbani ◽  
Alfredo Pontecorvi

Male hypogonadism is “a clinical syndrome that results from failure of the testis to produce physiological concentrations of testosterone and/or a normal number of spermatozoa due to pathology at one or more levels of the hypothalamic– pituitary–testicular axis”. The diagnostic protocol of male hypogonadism includes accurate medical history, physical exam, as well as hormone assays and instrumental evaluation. Basal hormonal evaluation of serum testosterone, LH, and FSH is important in the evaluation of diseases of the hypothalamus-pituitary-testis axis. Total testosterone levels < 8 nmol/l profoundly suggest the diagnosis of hypogonadism. An inadequate androgen status is moreover possible if the total testosterone levels are 8-12 nmol/L. In this “grey zone” the diagnosis of hypogonadism is debated and the appropriateness for treating these patients with testosterone should be fostered by symptoms, although often non-specific. Up to now, no markers of androgen tissue action can be used in clinical practice. The identification of markers of androgens action might be useful in supporting diagnosis, Testosterone Replacement Treatment (TRT) and clinical follow-up. The aim of this review is to analyze the main findings of recent studies in the field of discovering putative diagnostic markers of male hypogonadism in seminal plasma by proteomic techniques. The identified proteins might represent a “molecular androtest” useful as a seminal fingerprint of male hypogonadism, for the diagnosis of patients with moderate grades of testosterone reduction and in the follow-up of testosterone replacement treatment.


1999 ◽  
Vol 87 (6) ◽  
pp. 2274-2283 ◽  
Author(s):  
Gregory A. Brown ◽  
Matthew D. Vukovich ◽  
Rick L. Sharp ◽  
Tracy A. Reifenrath ◽  
Kerry A. Parsons ◽  
...  

This study examined the effects of acute dehydroepiandrosterone (DHEA) ingestion on serum steroid hormones and the effect of chronic DHEA intake on the adaptations to resistance training. In 10 young men (23 ± 4 yr old), ingestion of 50 mg of DHEA increased serum androstenedione concentrations 150% within 60 min ( P < 0.05) but did not affect serum testosterone and estrogen concentrations. An additional 19 men (23 ± 1 yr old) participated in an 8-wk whole body resistance-training program and ingested DHEA (150 mg/day, n = 9) or placebo ( n = 10) during weeks 1, 2, 4, 5, 7, and 8. Serum androstenedione concentrations were significantly ( P < 0.05) increased in the DHEA-treated group after 2 and 5 wk. Serum concentrations of free and total testosterone, estrone, estradiol, estriol, lipids, and liver transaminases were unaffected by supplementation and training, while strength and lean body mass increased significantly and similarly ( P < 0.05) in the men treated with placebo and DHEA. These results suggest that DHEA ingestion does not enhance serum testosterone concentrations or adaptations associated with resistance training in young men.


2003 ◽  
Vol 80 ◽  
pp. 76 ◽  
Author(s):  
S. Davis ◽  
M. Rees ◽  
C. Ribot ◽  
A. Moufarege ◽  
C. Rodenberg ◽  
...  

1997 ◽  
Vol 12 (1) ◽  
pp. 95-99 ◽  
Author(s):  
Gilles Trudel ◽  
Lyne Landry ◽  
Yvette Larose

Sign in / Sign up

Export Citation Format

Share Document