scholarly journals OPERATIONAL MODAL ANALYSIS AND DAMAGE DETECTION IN FRUIT QUALITY ASSESSMENT USING DIFFERENT METHODS OF PACKAGING

2009 ◽  
Vol 32 (1) ◽  
pp. 33-47
Author(s):  
Amer Eissa ◽  
Gomaa F. R
2015 ◽  
Vol 76 (8) ◽  
Author(s):  
Haizuan Abd Rahman ◽  
Ahmad Azlan Mat Isa ◽  
Abdul Rahim Bahari

This study attempts to apply vibration-based damage detection method specifically Operational Modal Analysis (OMA) on fiberglass reinforced epoxy plate. OMA is used on healthy fiber glass reinforced epoxy plate to extract the modal parameters and the procedure is extended to damaged fiberglass reinforced epoxy plate. Both healthy and damaged composite material are tested under different boundary conditions i.e. free-free on 4 edges, 1 edge clamped, 2 edges clamped, 3 edges clamped and 4 edges of free-free boundary condition. The result of frequency from OMA was compared analytically with Finite Element Method (FEM). Nastran software is employed in this study. The FEM using Nastran shows that the result obtained is not accurate enough compared to OMA. Therefore, another method was applied to look at the effectiveness of OMA method using Experimental Modal Analysis (EMA). It was observed that both EMA and OMA methods gave small deviation and good correlation.


2016 ◽  
Vol 15 (3) ◽  
pp. 289-301 ◽  
Author(s):  
Emilio Di Lorenzo ◽  
Giuseppe Petrone ◽  
Simone Manzato ◽  
Bart Peeters ◽  
Wim Desmet ◽  
...  

2013 ◽  
Vol 393 ◽  
pp. 649-654
Author(s):  
Haizuan Abd Rahman ◽  
Ahmad Azlan Mat Isa

This study attempts to apply vibration based damage detection method specifically operational modal analysis (OMA) on fiberglass reinforced epoxy plate. OMA is used on undamaged fiber glass reinforced epoxy plate to extract the modal parameters and after which the procedure is extended to saw cut damage fiberglass reinforced epoxy plate. Both healthy and damaged composite material are tested for different boundary conditions i.e. free-free on 4 edges, 1 edge clamped, 2 edges clamped, 3 edges clamped and 4 edges clamped condition. Then result of frequency from OMA was compared analytically with finite element method. Based on the results, it shows that a high deviation between OMA and finite element method can be observed. Result of frequency from OMA was then compared with Experimental Modal Analysis (EMA) to validate the effectiveness of OMA method. It is shown that results obtained from OMA are in good correlation with results obtained from EMA.


2021 ◽  
Author(s):  
David F. Castillo Zuñiga ◽  
Alain Giacobini Souza ◽  
Roberto G. da Silva ◽  
Luiz Carlos Sandoval Góes

Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1602
Author(s):  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Luis Felipe-Sesé ◽  
Francisco Díaz

Experimental characterization and validation of skin components in aircraft entails multiple evaluations (structural, aerodynamic, acoustic, etc.) and expensive campaigns. They require different rigs and equipment to perform the necessary tests. Two of the main dynamic characterizations include the energy absorption under impact forcing and the identification of modal parameters through the vibration response under any broadband excitation, which also includes impacts. This work exploits the response of a stiffened aircraft composite panel submitted to a multi-impact excitation, which is intended for impact and energy absorption analysis. Based on the high stiffness of composite materials, the study worked under the assumption that the global response to the multi-impact excitation is linear with small strains, neglecting the nonlinear behavior produced by local damage generation. Then, modal identification could be performed. The vibration after the impact was measured by high-speed 3D digital image correlation and employed for full-field operational modal analysis. Multiple modes were characterized in a wide spectrum, exploiting the advantages of the full-field noninvasive techniques. These results described a consistent modal behavior of the panel along with good indicators of mode separation given by the auto modal assurance criterion (Auto-MAC). Hence, it illustrates the possibility of performing these dynamic characterizations in a single test, offering additional information while reducing time and investment during the validation of these structures.


Sign in / Sign up

Export Citation Format

Share Document