Utilization of Landsat-8 Imagery and Aeromagnetic Data for Deciphering Alteration Zones and Structures: Implications for Mineral Exploration in the Southeastern Desert of Egypt

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Ahmed Eldosouky ◽  
Amin Pour ◽  
Abdelmged Hamed ◽  
Amira Taha ◽  
Mai Gamal ◽  
...  
Author(s):  
M. Safari ◽  
A. B. Pour ◽  
A. Maghsoudi ◽  
M. Hashim

Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh–Dokhtar (Sahand-Bazman) magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.


Author(s):  
S. Guha ◽  
H. Govil ◽  
M. Tripathi ◽  
M. Besoya

<p><strong>Abstract.</strong> Landsat-8 Operational Land Imager (OLI) data has been successfully employed in the field of mineral exploration to detect important minerals. In this study, Crosta technique was applied to identify the diagnostic features of hydroxyl minerals, carbonate minerals and iron oxides in Malanjkhand copper mines, India. The Crosta technique was applied to six [blue, green, red, near-infrared (NIR), shortwave infrared1 (SWIR1), shortwave infrared2 (SWIR2) bands and two sets of four (blue, red, NIR, SWIR1; and blue, near-infrared, SWIR1, SWIR2) bands of OLI data. Results show that the areas with alteration zones are enhanced much better by using six bands of OLI data. The alteration differences are examined with the Crosta technique using four band combinations. Crosta technique is very useful in generating the images of hydroxyl minerals, carbonate minerals, and iron oxides.</p>


2021 ◽  
Vol 62 (2) ◽  
pp. 12-24
Author(s):  
Hieu Trung Tran ◽  
Cuong Quoc Tran ◽  
Dung My Tran ◽  
Chung Minh Bui ◽  
Dung Van Chu ◽  
...  

The hydrothermal alteration zones are the important sign for mineral exploration and can be identified by remote sensing images completely, but this is limited due to the effect of vegetable. We address this problem by a method called “Directed Principal Component Analysis” (DPCA) that involves calculating principal components on two input band ratio images. One ratio is a geological discriminant, confused by the presence of vegetation; the second ratio is chosen for its suitability as a vegetation index. DPCA applied on Landsat 8 image in Pu Sam Cap area, Lai Châu characteristied by argilic alteration, sericite alteration, etc., with the typical minerals like kaolinite, illite, etc., and pyrite, chalcopyrite, magnetite; specularite, etc., The results have identified Fe - rich zones in Bai Bang and Nam Tra areas; clay minerals are concentrated mainly in Nam Tra area and along the main faults. The results are also compared with previous research data and fieldtrip data that shows similarity and feasibility. This paper indicated limitation of Landsat image such as spatial resolution, spectral resolution, etc., when applied in the tropical area.


2021 ◽  
Vol 11 (3) ◽  
pp. 1123-1138
Author(s):  
Mohamed Taha AlMakki Mohamed ◽  
Latifa Shaheen Al-Naimi ◽  
Tochukwu Innocent Mgbeojedo ◽  
Chidiebere Charles Agoha

AbstractIn recent years, various geological activities and different mineral prospecting and exploration programs have been intensified along the Red Sea hills in order to elucidate the geological maps and to evaluate the mineral potentials. This study is therefore aimed at testing the viability of using remote sensing and geographic information system (GIS) techniques for geological mapping and prospecting for gold mineralization in the area. The study area is located in northeast Sudan and covers an area of about 1379 km2. Different digital image processing techniques were applied to Landsat 8 Operational Land Imager image in order to increase the discrimination between various lithological units and to delineate wall rock alteration which represents target zones for gold mineralization. Image sharpening was performed to enhance the spatial resolution of the images for more detailed information. Contrast stretching was applied after the various digital processing procedures to produce more interpretable images. The principal component analysis transformations yielded saturated images and resulted in more interpretable images than the original data. Several ratio images were prepared, combined together and displayed in RGB color composite ratio images. This process revealed the existence of alteration zones in the study area. These zones extend from the northeast to the southwest in the acid meta-volcanic and silica barite rocks. The enhanced satellite images were implemented in the GIS environment to facilitate the final production of the geological map at scale 1:400,000. X-ray fluorescence analyses prove that selected samples taken from the wall rock alteration zones are gold-bearing.


Sign in / Sign up

Export Citation Format

Share Document