scholarly journals Evaluating marine safety factors and their relationship to diving accidents and diseases

2020 ◽  
Vol 10 (1) ◽  
pp. 9-20
Author(s):  
mohamed elbaradie
2020 ◽  
Vol 91 (10) ◽  
pp. 806-811
Author(s):  
Laëtitia Corgie ◽  
Nicolas Huiban ◽  
Jean-Michel Pontier ◽  
François-Xavier Brocq ◽  
Jean-François Boulard ◽  
...  

BACKGROUND: Scuba diving activities expose divers to serious accidents, which can require early hospitalization. Helicopters are used for early evacuation. On the French Mediterranean coast, rescue is made offshore mainly by a French Navy Dauphin or at a landing zone by an emergency unit EC 135 helicopter.METHODS: We retrospectively analyzed diving accidents evacuated by helicopter on the French Mediterranean coast from 1 September 2014 to 31 August 2016. We gathered data at the Center for Hyperbaric Medicine and Diving Expertise (SMHEP) of the Sainte-Anne Military Hospital (Toulon, France), the 35 F squadron at Hyres (France) Naval Air Station, and the SAMU 83 emergency unit (Toulon, France).RESULTS: A total of 23 diving accidents were evacuated offshore by Dauphin helicopter and 23 at a landing zone on the coast by EC 135 helicopter without hoist. Immersion pulmonary edema (IPE) accounted for one-third of the total diving accidents evacuated by helicopter with identified causes. It was responsible for at least half of the deaths at the dive place. A quarter of the rescued IPE victims died because of early cardiac arrest.DISCUSSION: Helicopter evacuation is indicated when vital prognosis (IPE and pulmonary overpressure in particular) or neurological functional prognosis (decompression sickness) is of concern. IPE is the primary etiology in patients with serious dive injuries that are life-threatening and who will benefit from helicopter evacuation. A non-invasive ventilation device with inspiratory support and positive expiratory pressure must be used, in particular for IPE.Corgie L, Huiban N, Pontier J-M, Brocq F-X, Boulard J-F, Monteil M. Diving accident evacuations by helicopter and immersion pulmonary edema. Aerosp Med Hum Perform. 2020; 91(10):806811.


2004 ◽  
Vol 88 (8) ◽  
pp. 88-93
Author(s):  
Elena Dragomirescu ◽  
Toshio Miyata ◽  
Hitoshi Yamada ◽  
Hiroshi Katsuchi

2021 ◽  
Vol 11 (12) ◽  
pp. 5474
Author(s):  
Tuomo Poutanen

This article addresses the process to optimally select safety factors and characteristic values for the Eurocodes. Five amendments to the present codes are proposed: (1) The load factors are fixed, γG = γQ, by making the characteristic load of the variable load changeable, it simplifies the codes and lessens the calculation work. (2) Currently, the characteristic load of the variable load is the same for all variable loads. It creates excess safety and material waste for the variable loads with low variation. This deficiency can be avoided by applying the same amendment as above. (3) Various materials fit with different accuracy in the reliability model. This article explains two options to reduce this difficulty. (4) A method to avoid rounding errors in the safety factors is explained. (5) The current safety factors are usually set by minimizing the reliability indexes regarding the target when the obtained codes include considerable safe and unsafe design cases with the variability ratio (high reliability/low) of about 1.4. The proposed three code models match the target β50 = 3.2 with high accuracy, no unsafe design cases and insignificant safe design cases with the variability ratio 1.07, 1.03 and 1.04.


Author(s):  
Yonghong Yang ◽  
Yu Chen ◽  
Zude Tang

Increasing traffic volume and insufficient road lanes often require municipal roads to be reconstructed and expanded. Where a road passes under a bridge, the reconstruction and expansion project will inevitably have an impact on the bridge. To evaluate the safety impact of road engineering projects on bridges, this paper evaluates the safety of the roads and ancillary facilities of highway bridges involved in municipal road engineering projects. Based on a comprehensive analysis of the safety factors of municipal roads undercrossing existing bridges, a fuzzy comprehensive analytic hierarchy process (AHP) evaluation method for the influence of road construction on the safety of existing bridges is proposed. First, AHP is used to select 11 evaluation factors. Second, the target layer, criterion layer, and index layer of evaluation factors are established, then a safety evaluation factor system is formed. The three-scale AHP model is used to determine the weight of assessment indexes. Third, through the fuzzy comprehensive AHP evaluation model, the fuzzy hierarchical comprehensive evaluation is carried out for the safety assessment index system. Finally, the fuzzy comprehensive evaluation method is applied to the engineering example of a municipal road undercrossing an existing expressway bridge. The comprehensive safety evaluation of the existing bridge reflects the practicability and feasibility of the method. It is expected that, with further development, the method will improve the decision-making process in bridge safety assessment systems.


Sign in / Sign up

Export Citation Format

Share Document