scholarly journals INFLUENCE OF DIFFERENT MAIZE VARIETIES ON THE RICE WEEVIL Sitophilus oryzae (L) INFESTATION UNDER LABORATORY CONDITIONS.

2014 ◽  
Vol 5 (3) ◽  
pp. 341-350
Author(s):  
S. Awadalla ◽  
G. Zayed ◽  
A. Ahmed ◽  
A. Hashem
2011 ◽  
Vol 26 (4) ◽  
pp. 377-384 ◽  
Author(s):  
Goran Andric ◽  
Petar Kljajic ◽  
Marijana Prazic-Golic

In laboratory conditions (25?1.C and 60?5% r.h.) effects of natural insecticides spinosad and abamectin on five S. oryzae populations (laboratory, Sid, Gornji Milanovac, Zabari and Novi Pazar) were investigated. Both insecticides for all tested populations were applied to untreated wheat grain at following rates 0.25, 0.5, 1.0 and 2.0 mg AI/kg, subsequently 25 adults were added in each plastic vessels (V=200 cm3) containing 50 g of treated wheat, in four replicates, for each population tested. Mortality of weevils was determined after 2-, 7- and 14-days, and the effect on progeny production was determined 8-weeks from parental exposure. Efficacy of spinosad and abamectin after 2-days of weevil exposure for all tested populations and all application rates was <15%. After 7-days of exposure, the efficacy was ?95% for weevils from Zabari, in wheat treated with 2 mg/kg of spinosad and abamectin, and for weevils from Gornji Milanovac, only in wheat treated with 2 mg/kg of spinosad. After 14-days of exposure the efficacy ?95% was found for laboratory weevils and weevils from Zabari and Gornji Milanovac, in wheat treated with 1 and 2 mg/kg of spinosad, and for S. oryzae from Novi Pazar and Sid, in wheat treated with 2 mg/kg of spinosad. At the same time for all tested populations abamectin at rates of 0.5, 1.0 and 2.0 mg/kg was 94-100% efficien t. No insecticide achieved total (100%) progeny reduction in tested populations of S. oryzae, while high progeny reduction (?95%) was found only in weevils which were in contact with wheat treated with 1 and 2 mg/kg of abamectin. The results showed that for highly efficient control of different populations of S. oryzae in wheat grain, ?2 mg/kg of abamectin, and, particularly, spinosad should be applied.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 7767-7783
Author(s):  
Mohamed E. Tawfeek ◽  
Hayssam M. Ali ◽  
Mohammad Akrami ◽  
Mohamed Z. M. Salem

Oils extracted from Cymbopogon citratus, Lantana camara, Artemisia camphorata, and Imperata cylindrica plants were used as potential insecticides against the rice weevil, Sitophilus oryzae (L.) (Coleoptera: Curculionidae). The phytochemical composition of the isolated oils was identified by gas chromatograph-mass spectrometry (GC-MS). Oil contact toxicities were evaluated against the adults of S. oryzae. The activities of acetylcholinesterase (AChE), alkaline phosphatase (ALP), and transaminases enzymes (AST) were measured. L. camara oil (LC50 = 9.81 mg/cm2) demonstrated the highest effect, followed by C. citratus oil (LC50 = 10.89 mg/cm2), A. camphorata EO (LC50 = 16.12 mg/cm2), and I. cylindrica oil (LC50= 36.85 mg/cm2) against the adults of S. oryzae. The inhibition percentages of AChE were 38.8, 41.7, 35.0, and 27.2%; ALP were 42.4, 49.3, 28.1, and 18.7%; AST were 33.9, 38.7, 20.8, and 11.8%; and ALT were 22.7, 30.5, 14.6, and 9.6% after treated S. oryzae with oils from C. citratus, L. camara, A. camphorata and I. cylindrica, respectively. The highest abundant compounds in C. citratus were geranial (25.95%), nerylacetal (8.85%), and neral (8.45%), in L. camara were caryophyllene (12.2%), and 3-elemene (8.89%), in A. camphorata were germacrene D-4-ol (20.83%), and borneol (19.47%), and in I. cylindrica were 5-phenylundecane (10.68%), and 6-phenyldodecane (8.70%).


2019 ◽  
Vol 56 (04) ◽  
pp. 1037-1044
Author(s):  
Saif-Ur Rehman

Entomopathogenic fungi (EPF) are suggested as a new class of alternates followed by Synthetic chemical control of the insect pests .Virulence of seven EPF isolates, four strains of Metarhizium {(Qin-08, Qin-13, Qin-18 and ME-38 (LT-178)}, two of Isaria {ME-33 (ILT-01), Yulin-5 (IYL-01)} and one of Beauveria bassiana (Qin-21) were assessed against the adults of Sitophilus oryzae under laboratory conditions, firstly at single conidial concentration (1x108 ml-1 ) by immersion and the food mix methods. Qin-21, ME-33 and Qin-18 caused significantly highest mortality of S.oryzae at immersion methods (100, 100 and 98%), followed by food mix method to 100, 84.16 and 91.66% respectively. Yulin-5 was the least effective, showing significantly the lowest mortality at food mixed (32.49%) and immersion methods (40.20%) respectively. Hence, the immersion method was found to be most effective, resulting the higher mortality rate of S. oryzae in comparison to food mix method, in all tested fungal isolates. Secondly, we screened out the most effective isolates for multiple dose comparison i.e., 1x104 to 1x107 conidia ml-1 by immersion method only. The isolate ME-33 resulted in 100% mortality of the pest at higher conidial dose as compared to Qin-21 and Qin-18 which showing 80 and 64.64% mortality respectively. The LT50 was observed to be 3.63, 4.17 and 8.58 days in ME-33, Qin-21 and Qin-18, respectively at the highest conidial concentration (1x107ml-1 ). ME-33 isolate with the highest mortality and lowest LT50 at conidial concentration 1x107 ml-1 proved to be most effective for the control of S. oryzae. So these fungal islotes could be a better alternative for the management of S. oryzae


Sign in / Sign up

Export Citation Format

Share Document