fumigant toxicity
Recently Published Documents


TOTAL DOCUMENTS

220
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Louise van Oudenhove ◽  
Aurelie Cazier ◽  
Marine Fillaud ◽  
Anne-Violette Lavoir ◽  
Hicham Fatnassi ◽  
...  

Essential oils (EOs) are increasingly used as biopesticides due to their insecticidal potential. This study addresses their non-target effects on a biological control agent: the egg parasitoid Trichogramma evanescens. In particular, we tested whether EOs affected parasitoid fitness either directly, by decreasing pre-imaginal survival, or indirectly, by disrupting parasitoids' orientation abilities. The effect of Anise, Fennel, Sweet orange, Basil, Coriander, Oregano, Peppermint, Mugwort, Rosemary and Thyme EOs were studied on five strains of T. evanescens. Specific experimental setups were developed, and data obtained from image analysis were interpreted with phenomenological models fitted with Bayesian inference. Results highlight the fumigant toxicity of EOs on parasitoid development. Anise, Fennel, Basil, Coriander, Oregano, Peppermint and Thyme EOs are particularly toxic and drastically reduce the emergence rate of T. evanescens. Most EOs also affect parasitoid behavior: (i) Basil, Coriander, Oregano, Peppermint, Mugwort and Thyme EOs are highly repellent for naive female parasitoids; (ii) Anise and Fennel EOs can have repellent to attractive effects depending on strains; and (iii) Sweet orange, Oregano and Rosemary EOs have no detectable impact on orientation behavior. This study shows that EOs fumigation have non-target effects on egg parasitoids. This highlights the need to cautiously precise the deployment framework of biopesticides in an agroecological perspective.


Author(s):  
María Laura Peschiutta ◽  
Fernanda Achimón ◽  
Vanessa Daniela Brito ◽  
Romina Paola Pizzolitto ◽  
Julio Alberto Zygadlo ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6698
Author(s):  
Arunaksharan Narayanankutty ◽  
Aswathi Moothakoottil Kuttithodi ◽  
Ahmed Alfarhan ◽  
Rajakrishnan Rajagopal ◽  
Damia Barcelo

Essential oils are biologically and environmentally safe pesticidal compounds yielded from aromatic plants. Spices are important sources of essential oils, and they are widely used in the medicine, food, and various other industries. Among the different spices, Allspice (Pimenta dioica) is underexplored in terms of its biological efficacy and a limited number of studies are available on the chemical composition of Allspice essential oil (AEO); thus, the present study evaluated the larvicidal property, the repellency, and the fumigant toxicity against common pests of stored products of AEO. AEO was found to inhibit the survival of larvae of such vectors as Aedis, Culex, and Armigeres species. Further, AEO was found to exert repellant effects against the pests of such stored products as Sitophilus, Callosobruchus, and Tribolium. Similarly, the fumigant toxicity was found to be high for AEO against these species. The contact toxicity of AEO was high against Sitophilus and Callosobruchus. Apart from that, the essential oil was found to be safe against a non-target organism (guppy fishes) and was found to be non-genotoxic in an Allium cepa model. Overall, the results of the present study indicate that the essential oil from Allspice could be used as an environmentally safe larvicidal and biopesticidal compound.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2304
Author(s):  
Junyu Liang ◽  
Yazhou Shao ◽  
Haoshu Wu ◽  
Yue An ◽  
Junlong Wang ◽  
...  

Storage pests pose a great threat to global food security. Here, we found that the essential oil (EO) extracted from E. densa possesses obvious effects against the insects that threaten stored-products. In this work, we investigated the chemical constituents of the essential oil extracted from Elsholtzia densa, and their insecticidal (contact and fumigant) toxicity against Tribolium castaneum and Lasioderma serricorne. A total of 45 compounds were identified by GC-MS, accounting for 98.74% of the total EO. Meanwhile, 11 compounds were isolated from the EO, including limonene, β-caryophyllene, ρ-cymene, trans-phytol, α-terpineol, linalool, acetophenone, 1,8-cineole, ρ-cymen-7-ol, 1-O-cerotoylgly-cerol, and palmitic acid. Furthermore, acetophenone, ρ-cymen-7-ol, and 1-O-cerotoylgly-cerol were isolated for the first time from Elsholtzia spp. The results of the bioassays indicated that the EO had the property of insecticidal toxicity against T. castaneum and L. serricorne. All of the compounds showed different levels of insecticidal toxicity against the two species of insects. Among them, 2-ethyl-1H-imidazole had no insecticidal toxicity against T. castaneum, but possessed fumigant and obvious contact toxicity against L. serricorne. ρ-Cymen-7-ol had beneficial insecticidal toxicity against the two species of insects, and fumigant toxicity against L. serricorne. ρ-Cymen-7-ol (LD50 = 13.30 μg/adult), 1-octen-3-ol (LD50 = 13.52 μg/adult), and 3-octanol (LD50 = 17.45 μg/adult) showed significant contact toxicity against T. castaneum. Acetophenone (LD50 = 7.07 μg/adult) and ρ-cymen-7-ol (LD50 = 8.42 μg/adult) showed strong contact toxicity against L. serricorne. ρ-Cymene (LC50 = 10.91 mg/L air) and ρ-cymen-7-ol (LC50 = 10.47 mg/L air) showed powerful fumigant toxicity to T. castaneum. Limonene (LC50 = 5.56 mg/L air), acetophenone (LC50 = 5.47 mg/L air), and 3-octanol (LC50 = 5.05 mg/L air) showed obvious fumigant toxicity against L. serricorne. In addition, the EO and its chemical compounds possessed different levels of repellent activity. This work provides some evidence of the value of exploring these materials for insecticidal activity, for human health purposes. We suggest that the EO extracted from E. densa may have the potential to be developed as an insecticidal agent against stored product insect pests.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Liu ◽  
Juan Hua ◽  
Bo Qu ◽  
Xuanyue Guo ◽  
Yangyang Wang ◽  
...  

Essential oils (EOs) are often the source of insecticidal substances of high efficiency and low toxicity. From gas chromatograph-mass spectrometer, column chromatography, and nuclear magnetic resonance spectra analyses, twenty terpenes were identified from the EOs of Artemisia nakaii. These comprised mostly monoterpenes (49.01%) and sesquiterpenes (50.76%). The terpenes at the highest concentrations in the EOs of A. nakaii were feropodin (200.46 ± 1.42 μg/ml), (+)-camphor (154.93 ± 9.72 μg/ml), β-selinene (57.73 ± 2.48 μg/ml), and 1,8-cineole (17.99 ± 1.06 μg/ml), calculated using area normalization and external standards. The EOs were tested for biological activity and showed strong fumigant toxicity and significant antifeedant activity against the larvae of Spodoptera litura. Furthermore, the monoterpenes 1,8-cineole and (+)-camphor displayed significant fumigant activity against S. litura, with LC50 values of 7.00 ± 0.85 and 18.16 ± 2.31 μl/L, respectively. Antifeedant activity of the sesquiterpenes feropodin and β-selinene was obvious, with EC50 values of 12.23 ± 2.60 and 10.46 ± 0.27 μg/cm2, respectively. The EOs and β-selinene were also found to inhibit acetylcholinesterase, with IC50 values of 37.75 ± 3.59 and 6.88 ± 0.48 μg/ml, respectively. These results suggest that monoterpenes and sesquiterpenes from the EOs of A. nakaii could potentially be applied as a botanical pesticides in the control of S. litura.


Author(s):  
Juan S. Oviedo-Sarmiento ◽  
Jenifer J. Bustos Cortes ◽  
Wilman A. Delgado Ávila ◽  
Luis E. Cuca Suárez ◽  
Eddy Herrera Daza ◽  
...  

2021 ◽  
Author(s):  
Sunday Tope Olorunsogbon ◽  
Joseph Akinneye ◽  
Eniola Olowu

Abstract Background: The efficacy of root and stem barks oil of Cleistopholis patens as a fumigant agent on Plodia interpunctella infesting maize grains as well as its toxic potential in wistar rats were investigated. Both plant oils were used for fumigant bioassay while only the root oil extract was used for all toxicological studies due to its higher toxicity on P. interpunctella when compared to stem oil extract. Both insects and wistar rats were exposed to different concentrations (0.0, 5%, 10%, 15%, 20% and 25%) of the extract. 36 wistar rats were divided into Group A-F and each group received different concentrations of the oil extract except for Group A that received only Dimethyl sulphide saline and various toxicological tests were conducted. Results: Result shows that both stem and root extracts significantly evoked (p<0.05) higher larva and adult mortality in treated grains when compared to both controls except at 5% of both oil extracts. Ten percent root oil extract achieved 50% mortality in Plodia interpunctella within 48hrs and 25% achieved 100% mortality in larva and adult of Plodia interpunctella within 72hrs when compared to the amount needed to achieve 50% and 100% mortality in stem oil extract within 48hrs and 72hrs. Irrespective of the concentration administered to the animal, there were no significant alteration (p>0.05) in the toxicological test using both liver and kidney biochemical parameters.Conclusion: This study shows that root oil extract of C. patens is a very good fumigant poison to Plodia interpunctella with no toxic impact in wistar rats.


Sign in / Sign up

Export Citation Format

Share Document