INFLUENCE OF NATURAL CONDITIONS ON SOME BIOLOGICAL ASPECTS OF Trichogramma evanescens (WESTWOOD) IN COMPARISON WITH LABORATORY REARING CONDITIONS

2014 ◽  
Vol 5 (9) ◽  
pp. 891-902
Author(s):  
Manal El-Sharkawy ◽  
K. Hassan ◽  
Dina Ahmed
2020 ◽  
Vol 113 (2) ◽  
pp. 905-910 ◽  
Author(s):  
Jayshree S Patel ◽  
Sang-Bin Lee ◽  
Thomas Chouvenc ◽  
Nan-Yao Su

Abstract Termite colony size can influence its foraging activity, reproductive maturity, and, for pest species, potential for structural damage. Estimating colony size of subterranean termite species in field conditions has been challenging owing to their extensive foraging territory and their cryptic nesting habit and has primarily relied on mark–recapture methods. With laboratory-reared colonies in individual containers, determining colony size can be achieved by processing all termites from the nest material, which can be labor intensive and partially destructive. However, with the recent rise in the need of large laboratory colonies for use in colony-wide experimental protocols, there was an imperative to develop a procedure to estimate initial colony sizes without imposing a major stress on colonies before an experiment. In this study, the average daily wood consumption of whole colonies was used to infer the colony size of two Coptotermes, Wasmann (Blattodea: Rhinotermitidae) species and their hybrids in laboratory-rearing conditions. Correlations between the daily wood consumption and several demographic variables within colonies were established. Linear models varied across all species mating types with R2 values greater than 0.8 for all demographic variables. For colonies from all mating combinations, Pearson’s correlation coefficient values were greater than 0.94 between their daily wood consumption and both the number of workers and total number of termites, and greater than 0.91 between daily wood consumption and colony mass. Therefore, in colonies with fixed laboratory conditions, their average daily wood consumption determination, which is nondestructive on colonies, can be used to infer colony size of subterranean termites.


2016 ◽  
Vol 26 (9) ◽  
pp. 1184-1196 ◽  
Author(s):  
Elisabete A. Santos ◽  
Priscilla M.G. Costa ◽  
Jorge B. Torres ◽  
Christian S.A. Silva-Torres

2001 ◽  
Vol 133 (3) ◽  
pp. 429-438 ◽  
Author(s):  
B.D. Roitberg ◽  
G. Boivin ◽  
L.E.M. Vet

AbstractFitness, defined as the per capita rate of increase of a genotype with reference to the population carrying the associated genes, is a concept used by biologists to describe how well an individual performs in a population. Fitness is rarely measured directly and biologists resort to proxies more easily measured but with varying connection to fitness. Size, progeny survival, and developmental rate are the most common proxies used in the literature to describe parasitoid fitness. The importance of the proxies varies between papers looking at evolutionary theories and those assessing ecological applications. The most direct measures of fitness for parasitoids are realised fecundity for females and mating ability for males, although these proxies are more difficult to measure under natural conditions. For practical purposes, measure of size, through body size or mass, is the proxy easiest to use while providing good comparative values; however, care must be taken when using a single proxy, as proxies can be affected differently by rearing conditions of the parasitoid.


2022 ◽  
Vol 82 ◽  
Author(s):  
R. Amari ◽  
M. Gammoudi ◽  
H. Tlili ◽  
M. Ben Ali ◽  
A. Hedfi ◽  
...  

Abstract Several endemic species of Blaps occur in Tunisia, and the species Blaps nefrauensis nefrauensis has been reported in Moulares (urban zone in west-central Tunisia), where it lives and reproduces in home gardens and old buildings. The aim of this work is to study the life cycle of the darkling beetle, considering both field and laboratory rearing conditions. As a result, the beetle species has different developmental stages (egg, larva, prepupa, pupa, and adult) that last about 15 months. Each year during the same period, adults emerge (early summer) and expire (late autumn), larvae hatch (late summer) and pupate (early summer). There is only one generation per year. Females began laying eggs in late July. The eggs were ovoid, white, and about 2.7 mm in length and 1.5 mm in width. Embryogenesis took an average of nine days. The first instar larvae were at initially only 4.5 mm long and ivory white in color. A brief description of the newly egg hatched larva was provided; thus, the nerve fibers innervating the apical setae in the antennae and ligula were detected. Further light microscopic examination of the embryo before hatching from the egg pointed out that the antennal sensilla are protected during the embryogenesis stage.


Sign in / Sign up

Export Citation Format

Share Document