Chronic infection with Toxoplasma gondii does not prevent acute disease after virulent strain reinfection in experimental mice

2018 ◽  
Vol 11 (3) ◽  
pp. 149-154
Author(s):  
Eman Gaballah ◽  
Aida Abdel-Magied ◽  
Nora Aboulfotouh ◽  
Goman Elganainy
1998 ◽  
Vol 66 (9) ◽  
pp. 4382-4388 ◽  
Author(s):  
George S. Yap ◽  
Tanya Scharton-Kersten ◽  
David J. P. Ferguson ◽  
Dan Howe ◽  
Yasuhiro Suzuki ◽  
...  

ABSTRACT The virulent RH strain of Toxoplasma gondii is acutely lethal in mice and fails to establish chronic infection. Vaccination of BALB/c mice with a soluble tachyzoite antigen preparation, STAg, in combination with the immunostimulatory cytokine interleukin-12 results in partial protection against RH lethal challenge. Nevertheless, brain tissue obtained from surviving, vaccinated mice as late as 1 year after RH infection contained latent parasite forms as demonstrated by subinoculation into naive recipients. The tachyzoites arising in the subinoculated animals were genetically indistinguishable from the original RH inoculum. Microscopic examination revealed that the persistent parasite forms present in the brains of vaccinated and challenged mice have a tissue cyst-like morphology and express the bradyzoite antigen BAG-1 but not the tachyzoite-specific antigen SAG-2 but are different from the cysts formed by avirulent T. gondii strains in that the internal parasite stages display ultrastructural features intermediate between tachyzoites and bradyzoites. Moreover, the zoites within the RH tissue cysts are clearly distinct from conventional bradyzoites in their sensitivity to pepsin-HCl digestion. In contrast to the observations made with partially resistant STAg/interleukin-12-vaccinated animals, no latent forms could be detected in brain tissue after RH challenge of mice immunized with a live attenuated tachyzoite vaccine which confers total protection against this parasite isolate. The above findings demonstrate the potential of a virulent T. gondii strain to generate latent parasite stages, a process which may be promoted under conditions of incomplete vaccination.


Placenta ◽  
2011 ◽  
Vol 32 (2) ◽  
pp. 116-120 ◽  
Author(s):  
P.S. Franco ◽  
D.A.O. Silva ◽  
I.N. Costa ◽  
A.O. Gomes ◽  
A.L.N. Silva ◽  
...  

2018 ◽  
Vol 215 (7) ◽  
pp. 1767-1769 ◽  
Author(s):  
Leona Gabryšová ◽  
Anne O’Garra

In this issue of JEM, two complementary manuscripts by Huynh et al. (https://doi.org/10.1084/jem.20171704) and Yu et al. (https://doi.org/10.1084/jem.20170155) demonstrate that the transcription factor Bhlhe40 acts as a repressor of IL-10 production during infection with Mycobacterium tuberculosis or Toxoplasma gondii. Deletion of Bhlhe40 in both cases resulted in chronic infection and increased pathogen load as a consequence of increased IL-10 production.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Geetha Kannan ◽  
Manlio Di Cristina ◽  
Aric J. Schultz ◽  
My-Hang Huynh ◽  
Fengrong Wang ◽  
...  

ABSTRACT Toxoplasma gondii is a ubiquitous pathogen that can cause encephalitis, congenital defects, and ocular disease. T. gondii has also been implicated as a risk factor for mental illness in humans. The parasite persists in the brain as slow-growing bradyzoites contained within intracellular cysts. No treatments exist to eliminate this form of parasite. Although proteolytic degradation within the parasite lysosome-like vacuolar compartment (VAC) is critical for bradyzoite viability, whether other aspects of the VAC are important for parasite persistence remains unknown. An ortholog of Plasmodium falciparum chloroquine resistance transporter (CRT), TgCRT, has previously been identified in T. gondii. To interrogate the function of TgCRT in chronic-stage bradyzoites and its role in persistence, we knocked out TgCRT in a cystogenic strain and assessed VAC size, VAC digestion of host-derived proteins and parasite autophagosomes, and the viability of in vitro and in vivo bradyzoites. We found that whereas parasites deficient in TgCRT exhibit normal digestion within the VAC, they display a markedly distended VAC and their viability is compromised both in vitro and in vivo. Interestingly, impairing VAC proteolysis in TgCRT-deficient bradyzoites restored VAC size, consistent with a role for TgCRT as a transporter of products of digestion from the VAC. In conjunction with earlier studies, our current findings suggest a functional link between TgCRT and VAC proteolysis. This study provides further evidence of a crucial role for the VAC in bradyzoite persistence and a new potential VAC target to abate chronic Toxoplasma infection. IMPORTANCE Individuals chronically infected with the intracellular parasite Toxoplasma gondii are at risk of experiencing reactivated disease that can result in progressive loss of vision. No effective treatments exist for chronic toxoplasmosis due in part to a poor understanding of the biology underlying chronic infection and a lack of well-validated potential targets. We show here that a T. gondii transporter is functionally linked to protein digestion within the parasite lysosome-like organelle and that this transporter is necessary to sustain chronic infection in culture and in experimentally infected mice. Ablating the transporter results in severe bloating of the lysosome-like organelle. Together with earlier work, this study suggests the parasite’s lysosome-like organelle is vital for parasite survival, thus rendering it a potential target for diminishing infection and reducing the risk of reactivated disease.


1997 ◽  
Vol 352 (1359) ◽  
pp. 1355-1359 ◽  
Author(s):  
J. Alexander ◽  
T. M. Scharton-Kersten ◽  
G. Yap ◽  
C. W. Roberts ◽  
F. Y. Liew ◽  
...  

The interaction of protozoan parasites with innate host defences is critical in determining the character of the subsequent infection. The initial steps in the encounter of Toxoplasma gondii with the vertebrate immune system provide a striking example of this important aspect of the host–parasite relationship. In immunocompetent individuals this intracellular protozoan produces an asymptomatic chronic infection as part of its strategy for transmission. Nevertheless, T. gondii is inherently a highly virulent pathogen. The rapid induction by the parasite of a potent cell–mediated immune response that both limits its growth and drives conversion to a dormant cyst stage explains this apparent paradox. Studies with gene–deficient mice have demonstrated the interleukin–12 (IL–12)–dependent production of interferon gamma (IFN–gamma) to be of paramount importance in controlling early parasite growth. However, this seems to be independent of nitric oxide production as mice deficient in inducible nitric oxide synthase (iNOS) and tumour necrosis factor receptor were able to control early growth of T. gondii , although they later succumbed to infection. Nitric oxide does, however, seem to be important in controlling persistent infection; treating chronic infection with iNOS metabolic inhibitors results in disease reactivation. Preliminary evidence implicates neutrophils in effector pathways against this parasite distinct from that described for macrophages. Once initiated, IL–12–dependent IFN–gamma production in synergy with other proinflammatory cytokines can positively feed back on itself to induce ‘cytokine shock’. Regulatory cytokines, particularly IL–10, are essential to down–regulate inflammation and limit host pathology.


2016 ◽  
Vol 84 (10) ◽  
pp. 3063-3070 ◽  
Author(s):  
Kelly J. Pittman ◽  
Patrick W. Cervantes ◽  
Laura J. Knoll

Intrinsic toToxoplasma gondiiinfection is the parasite-induced modulation of the host immune response, which ensures establishment of a chronic lifelong infection. This manipulation of the host immune response allowsT. gondiito not only dampen the ability of the host to eliminate the parasite but also trigger parasite differentiation to the slow-growing, encysted bradyzoite form. We previously used RNA sequencing (RNA-seq) to profile the transcriptomes of mice andT. gondiiduring acute and chronic stages of infection. One of the most abundant host transcripts during acute and chronic infection was Z-DNA binding protein 1 (ZBP1). In this study, we determined that ZBP1 functions to controlT. gondiigrowth. In activated macrophages isolated from ZBP1 deletion (ZBP1−/−) mice,T. gondiihas an increased rate of replication and a decreased rate of degradation. We also identified a novel function for ZBP1 as a regulator of nitric oxide (NO) production in activated macrophages, even in the absence ofT. gondiiinfection. Upon stimulation,T. gondii-infected ZBP1−/−macrophages display increased proinflammatory cytokines compared to wild-type macrophages under the same conditions. Thesein vitrophenotypes were recapitulatedin vivo, with ZBP1−/−mice having increased susceptibility to oral challenge, higher cyst burdens during chronic infection, and elevated inflammatory cytokine responses. Taken together, these results highlight a role for ZBP1 in assisting host control ofT. gondiiinfection.


Sign in / Sign up

Export Citation Format

Share Document