scholarly journals Sponge-city-based urban water system planning: a case study of water quality sensitive new area development in China

2021 ◽  
Author(s):  
Yijian Xu ◽  
Yanhong Kong

Abstract In recent years, sponge city has been booming in China aiming to alleviate urban flooding and improve water quality of natural water bodies. LID/green infrastructure has been gradually introduced to urban planning and urban water system planning. Efficient deployment of LID facilities is critical, which requires modeling and evaluation to develop rational planning. A case study of Guian New Area was presented to show the application of SWMM and the planning methods in sponge-city-based urban water system planning for water quality sensitive new areas development. Based on SWMM, two river network water quality models, the Dongmenqiao River and the Chetian River, were established through a systematic analysis of the case study area. Baseline scenarios were simulated and analyzed, and assimilation capacities of the two river basins were calculated by a trial-and-error method. Finally, two LID scenarios were carefully designed, simulated, and analyzed to support the planning. The simulations showed that in order to meet the strict water quality requirements in Guian New Area, large scales of LID facilities are required to cut down the rainfall-runoff pollution. Moreover, measures such as more frequent cleaning to reduce pollutants accumulation on the ground should also be taken to mitigate the maximum buildups of pollutants.

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1456
Author(s):  
Robert Sitzenfrei ◽  
Manfred Kleidorfer ◽  
Peter M. Bach ◽  
Taneha Kuzniecow Bacchin

Urban water systems face severe challenges such as urbanisation, population growth and climate change. Traditional technical solutions, i.e., pipe-based, grey infrastructure, have a single purpose and are proven to be unsustainable compared to multi-purpose nature-based solutions. Green Infrastructure encompasses on-site stormwater management practices, which, in contrast to the centralised grey infrastructure, are often decentralised. Technologies such as green roofs, walls, trees, infiltration trenches, wetlands, rainwater harvesting and permeable pavements exhibit multi-functionality. They are capable of reducing stormwater runoff, retaining stormwater in the landscape, preserving the natural water balance, enhancing local climate resilience and also delivering ecological, social and community services. Creating multi-functional, multiple-benefit systems, however, also warrants multidisciplinary approaches involving landscape architects, urban planners, engineers and more to successfully create a balance between cities and nature. This Special Issue aims to bridge this multidisciplinary research gap by collecting recent challenges and opportunities from on-site systems up to the watershed scale.


Author(s):  
Fernando Chapa ◽  
María Pérez ◽  
Jochen Hack

Green Infrastructure promotes the use of natural functions and processes as potential solutions to reduce negative effects derived from anthropocentric interventions such as urbanization. In cities of Latin America, for example, the need for more nature-sound infrastructure is evident due to its degree of urbanization and degradation of ecosystems, as well as the alteration of the local water cycle. In this study, an experimental approach for implementation of a prototype is presented. The experiment took place in a highly urbanized watershed located in the Metropolitan Area of Costa Rica. Initially, understanding the characteristics of the study area at different scales was achieved by applying the Urban Water System Transition Framework to identify the existing level of development of the urban water infrastructure, and potential future stages. Subsequently, preferences related to spatial locations and technologies were identified from different local decision-makers. Those insights were adopted to identify a potential area for implementation of the prototype. The experiment consisted on an adaptation of the local sewer to act as a temporal reservoir to reduce the effects derived from rapid generation of stormwater runoff. Unexpected events, not considered initially in the design, are reported in this study as a means to identify necessary adaptations of the methodology. Our study shows from an experimental learning-experience that the relation between different actors advocating for such technologies influences the implementation and operation of non-conventional technologies. Furthermore, the perception of security associated to green spaces was found as a key driver to increase the willingness of residents to modify their urban environments. In consequence, those aspects should be carefully considered as factors of designs of engineering elements when they are related to complex socio-ecological urban systems.


Author(s):  
Nanqi Ren ◽  
Qian Wang ◽  
Qiuru Wang ◽  
Hong Huang ◽  
Xiuheng Wang

2013 ◽  
Vol 11 (3) ◽  
pp. 198-210 ◽  
Author(s):  
Luis E. Neumann ◽  
Magnus Moglia ◽  
Stephen Cook ◽  
Minh N. Nguyen ◽  
Ashok K. Sharma ◽  
...  

Resources ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 62 ◽  
Author(s):  
Ruchira Ghosh ◽  
Arun Kansal ◽  
G Venkatesh

Water is a non substitutable resource and a social good, which governments must perforce provide to its citizens in the right quantity and quality. An integrated urban metabolism model is useful in understanding the status quo of an urban water and sanitation system. By defining and measuring the values of relevant hydrological performance indicators—deliverables of the model referred to—a thorough knowledge of the present performance and the gaps, which need to be plugged en route to a sustainable urban water infrastructure, can be obtained, as demonstrated in this paper. This then forms the bedrock for decision-making and policy formulation for change to be introduced top-down as well as advice, which would enable the much needed bottom-up support to policies. The authors have chosen Delhi as the case study city, but would like to point out that this application can be reproduced for any other town/city/region of the world. The water balance within the chosen system boundaries shows that the annual unutilized flows, amounting to 1443 million cubic meters, dominate the metabolic flows of water in Delhi, and the annual groundwater withdrawal, which exceeds 420 million cubic meters, is much greater than the recharge rate, resulting in a rapid depletion of the groundwater level. There is an urgent need thereby to improve the rate of infiltration of stormwater and reduce the rate of runoff by focusing on increasing the share of permeable surfaces in the city, as well as to consider the wastewater streams as potential sources of water, while not forgetting demand side of management measures, as the pressure on the urban water system in the city is likely to intensify with a combination of population growth, economic development, and climate change in the near future. The recommendations provided by the authors towards the end of the article, can, if suitable measures are undertaken and robust policies are implemented, result in Delhi’s enjoying a water surplus in the short term, and progressively attain complete sustainability with regard to the utilization of its water resources.


Sign in / Sign up

Export Citation Format

Share Document