scholarly journals Prediction of dissolved oxygen in reservoirs using adaptive network-based fuzzy inference system

2011 ◽  
Vol 14 (1) ◽  
pp. 167-179 ◽  
Author(s):  
Vesna Ranković ◽  
Jasna Radulović ◽  
Ivana Radojević ◽  
Aleksandar Ostojić ◽  
Ljiljana Čomić

Predicting water quality is the key factor in the water quality management of reservoirs. Since a large number of factors affect the water quality, traditional data processing methods are no longer good enough for solving the problem. The dissolved oxygen (DO) level is a measure of the health of the aquatic system and its prediction is very important. DO dynamics are highly nonlinear and artificial intelligence techniques are capable of modelling this complex system. The objective of this study was to develop an adaptive network-based fuzzy inference system (ANFIS) to predict the DO in the Gruža Reservoir, Serbia. The fuzzy model was developed using experimental data which were collected during a 3-year period. The input variables analysed in this paper are: water pH, water temperature, total phosphate, nitrites, ammonia, iron, manganese and electrical conductivity. The selection of an appropriate set of input variables is based on the building of ANFIS models for each possible combination of input variables. Results of fuzzy models are compared with measured data on the basis of correlation coefficient, mean absolute error and mean square error. Comparing the predicted values by ANFIS with the experimental data indicates that fuzzy models provide accurate results.

2014 ◽  
Vol 79 (10) ◽  
pp. 1323-1334 ◽  
Author(s):  
Marija Savic ◽  
Ivan Mihajlovic ◽  
Milica Arsic ◽  
Zivan Zivkovic

This paper presents the results of the tropospheric ozone concentration modeling as the dependence on volatile organic compounds - VOCs (Benzene, Toluene, m,p-Xylene, o-Xylene, Ethylbenzene); nonorganic compounds - NOx (NO, NO2, NOx, CO, H2S, SO2 and PM10) in the ambient air in parallel with the meteorological parameters: temperature, solar radiation, relative humidity, wind speed and direction. Modeling is based on measured results obtained during the year 2009. The measurements were performed at the measuring station located within an agricultural area, in vicinity of city of Zrenjanin (Serbian Banat, Serbia). Statistical analysis of obtained data, based on bivariate correlation analysis indicated that accurate modeling cannot be performed using linear statistics approach. Also, considering that almost all input variables have wide range of relative change (ratio of variance compared to range), nonlinear statistic analysis method based on only one rule describing the behavior of input variable, most certainly wouldn?t present accurate enough results. From that reason, modeling approach was based on Adaptive-Network-Based Fuzzy Inference System (ANFIS). Model obtained using ANFIS methodology resulted with high accuracy, with prediction potential of above 80%, considering that obtained determination coefficient for the final model was R2=0.802.


2019 ◽  
Vol 14 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Sever Gabriel Racz ◽  
Radu Eugen Breaz ◽  
Octavian Bologa ◽  
Melania Tera ◽  
Valentin Stefan Oleksik

Manufacturing processes are usually complex ones, involving a significant number of parameters. Unconventional manufacturing processes, such as incremental forming is even more complex, and the establishment of some analytical relationships between parameters is difficult, largely due to the nonlinearities in the process. To overcome this drawback, artificial intelligence techniques were used to build empirical models from experimental data sets acquired from the manufacturing processes. The approach proposed in this work used an adaptive network-based fuzzy inference system to extract the value of technological force on Z-axis, which appears during incremental forming, considering a set of technological parameters (diameter of the tool, feed and incremental step) as inputs. Sets of experimental data were generated and processed by means of the proposed system, to make use of the learning ability of it to extract the empirical values of the technological force from rough data.


2021 ◽  
pp. 004051752110205
Author(s):  
Xueqing Zhao ◽  
Ke Fan ◽  
Xin Shi ◽  
Kaixuan Liu

Virtual reality is a technology that allows users to completely interact with a computer-simulated environment, and put on new clothes to check the effect without taking off their clothes. In this paper, a virtual fit evaluation of pants using the Adaptive Network Fuzzy Inference System (ANFIS), VFE-ANFIS for short, is proposed. There are two stages of the VFE-ANFIS: training and evaluation. In the first stage, we trained some key pressure parameters by using the VFE-ANFIS; these key pressure parameters were collected from real try-on and virtual try-on of pants by users. In the second stage, we evaluated the fit by using the trained VFE-ANFIS, in which some key pressure parameters of pants from a new user were determined and we output the evaluation results, fit or unfit. In addition, considering the small number of input samples, we used the 10-fold cross-validation method to divide the data set into a training set and a testing set; the test accuracy of the VFE-ANFIS was 94.69% ± 2.4%, and the experimental results show that our proposed VFE-ANFIS could be applied to the virtual fit evaluation of pants.


2011 ◽  
Vol 383-390 ◽  
pp. 1062-1070
Author(s):  
Adeel H. Suhail ◽  
N. Ismail ◽  
S.V. Wong ◽  
N.A. Abdul Jalil

The selection of machining parameters needs to be automated, according to its important role in machining process. This paper proposes a method for cutting parameters selection by fuzzy inference system generated using fuzzy subtractive clustering method (FSCM) and trained using an adaptive network based fuzzy inference system (ANFIS). The desired surface roughness (Ra) was entered into the first step as a reference value for three fuzzy inference system (FIS). Each system determine the corresponding cutting parameters such as (cutting speed, feed rate, and depth of cut). The interaction between these cutting parameters were examined using new sets of FIS models generated and trained for verification purpose. A new surface roughness value was determined using the cutting parameters resulted from the first steps and fed back to the comparison unit and was compared with the desired surface roughness and the optimal cutting parameters ( which give the minimum difference between the actual and predicted surface roughness were find out). In this way, single input multi output ANFIS architecture presented which can identify the cutting parameters accurately once the desired surface roughness is entered to the system. The test results showed that the proposed model can be used successfully for machinability data selection and surface roughness prediction as well.


2020 ◽  
Vol 11 (1) ◽  
pp. 203
Author(s):  
Primož Jelušič ◽  
Andrej Ivanič ◽  
Samo Lubej

Efforts were made to predict and evaluate blast-induced ground vibrations and frequencies using an adaptive network-based fuzzy inference system (ANFIS), which has a fast-learning capability and the ability to capture the non-linear response during the blasting process. For this purpose, the ground vibrations generated by the blast in a tunnel tube were monitored at a residential building located directly above the tunnel tube. To investigate the usefulness of this approach, the prediction by the ANFIS was also compared to those by three of the most commonly used vibration predictors. The efficiency criteria chosen for the comparison between the predicted and actual data were the sum of squares due to error (SSE), the root mean squared error (RMSE), and the goodness of fit (R-squared and adjusted R-squared). The results show that the ANFIS prediction model performs better than the commonly used predictors.


Sign in / Sign up

Export Citation Format

Share Document