scholarly journals The open real-time control (RTC)-Tools software framework for modeling RTC in water resources sytems

2014 ◽  
Vol 17 (1) ◽  
pp. 130-148 ◽  
Author(s):  
D. Schwanenberg ◽  
B. P. J. Becker ◽  
M. Xu

Real-time control-Tools is a novel software framework for modeling real-time control and decision support in water resources systems. It integrates different control paradigms ranging from simple feedback control strategies with triggers, operating rules and controllers to advanced optimization-based approaches such as model predictive control (MPC). A key feature of the package is the modular integration of modeling components, related adjoint models, and optimization algorithms which makes it well suited for the control of large-scale water systems. Interfaces enable its integration into Supervisory Control and Data Acquisition systems, operational stream flow forecasting, and decision support systems as well as hydraulic modeling packages. This paper presents an overview of the novel software framework, gives an introduction into the underlying control theory for which it has been developed and discusses the related software architecture. A first case describes an innovative combination of binary decision trees and feedback control in application to the modeling of a highly regulated River Rhine reach along the German–French border. Two additional cases present the efficient application of MPC to the short-term management of two large-scale water systems in the Netherlands and the USA.

2017 ◽  
Vol 28 (10) ◽  
pp. 1750126 ◽  
Author(s):  
Yutong Liu ◽  
Chengxuan Cao ◽  
Yaling Zhou ◽  
Ziyan Feng

In this paper, an improved real-time control model based on the discrete-time method is constructed to control and simulate the movement of high-speed trains on large-scale rail network. The constraints of acceleration and deceleration are introduced in this model, and a more reasonable definition of the minimal headway is also presented. Considering the complicated rail traffic environment in practice, we propose a set of sound operational strategies to excellently control traffic flow on rail network under various conditions. Several simulation experiments with different parameter combinations are conducted to verify the effectiveness of the control simulation method. The experimental results are similar to realistic environment and some characteristics of rail traffic flow are also investigated, especially the impact of stochastic disturbances and the minimal headway on the rail traffic flow on large-scale rail network, which can better assist dispatchers in analysis and decision-making. Meanwhile, experimental results also demonstrate that the proposed control simulation method can be in real-time control of traffic flow for high-speed trains not only on the simple rail line, but also on the complicated large-scale network such as China’s high-speed rail network and serve as a tool of simulating the traffic flow on large-scale rail network to study the characteristics of rail traffic flow.


Author(s):  
Ryan W. Krauss

Arduino microcontrollers are popular, low-cost, easy-to-program, and have an active user community. This paper seeks to quantitatively assess whether or not Arduinos are a good fit for real-time feedback control experiments and controls education. Bode plots and serial echo tests are used to assess the use of Arduinos in two scenarios: a prototyping mode that involves bidirectional real-time serial communication with a PC and a hybrid mode that streams data in real-time over serial. The closed-loop performance with the Arduino is comparable to that of another more complicated and more expensive microcontroller for the plant considered. Some practical tips on using an Arduino for real-time feedback control are also given.


1992 ◽  
Vol 25 (20) ◽  
pp. 37-42
Author(s):  
Tasuku Hoshino ◽  
Katsuhisa Furuta

Author(s):  
Mahmood Mahmoodi Nesheli ◽  
Avishai (Avi) Ceder

Modern public transport (PT) operations have evolved into a complex multimodal system in which small-scale disorder can propagate. Large-scale disruptions to passengers and PT agencies result. Various studies have been developed to model PT control at the operational level; however, the main downside of possible real-time control actions is the lack of intelligent modeling and a systematic process that can activate such actions immediately. This study presents a real-time control procedure to increase service reliability and to improve successful coordinated transfers in a complex PT system. The developed method aims at minimizing total travel time for passengers and reducing the uncertainty of meetings between PT vehicles. A library of operational tactics is first built to serve as a basis of the real-time decision-making process. The methodology developed is applied to a real-life case study in Auckland, New Zealand. The results showed improvements in system performance and confirmed the use of real-time control actions to maintain reliable PT service.


Sign in / Sign up

Export Citation Format

Share Document