scholarly journals An urban pluvial flood simulation model based on diffusive wave approximation of shallow water equations

2017 ◽  
Vol 50 (1) ◽  
pp. 138-154 ◽  
Author(s):  
Boni Su ◽  
Hong Huang ◽  
Wei Zhu

Abstract Urban floods caused by sudden heavy rainstorms are becoming more frequent and causing serious problems in many cities. Developing methods to simulate urban rainstorm floods is helpful in disaster prevention and mitigation. In this paper, we establish an urban pluvial flood simulation model based on diffusion wave approximation of shallow-water equations. The model takes full account of the characteristics in urban pluvial floods, and includes many improvements in simulation details. These details include building a consideration method, a rainfall consideration method, and so on. A new calculation method of water surface gradient is established, which is suitable for complex topology in urban pluvial flood simulation and can reduce unnecessary simulation error introduced by calculation methods. The accuracy and stability of the model are verified through simple cases with analytical solution and experiments with measured data. The results show that the new model is more accurate than common diffusion wave approximation models. A new treatment to avoid ‘checkerboard oscillation’ is established. In comparison with existing methods, the new method proved to be the best. A proof of concept shows that the new model can deal with complex situations and is helpful for urban drainage system planning.

2021 ◽  
Vol 26 (2) ◽  
pp. 04020065
Author(s):  
Hamed Tavakolifar ◽  
Hossein Abbasizadeh ◽  
Sara Nazif ◽  
Ebrahim Shahghasemi

2018 ◽  
Vol 33 (3) ◽  
pp. 173-185 ◽  
Author(s):  
Dmitry S. Saburin ◽  
Tatiana G. Elizarova

Abstract A new model for calculation of circulation in shallow water basins is created based on the shallow water equations taking into account the Coriolis force and quadratic friction on the bottom. Wind effects are taken into account as forcing. The main feature of the model is a new numerical method based on regularized shallow water equations allowing one to construct the simple and sufficiently accurate numerical algorithms possessing a number of advantages over existing methods. The paper provides a detailed description of all construction steps of the model. The developed model was implemented for the water area of the Azov Sea. The paper presents the modelling of extreme surges in March 2013 and September 2014, the results of calculations are compared with observation data of hydrometeorological stations in Taganrog and Yeysk.


2013 ◽  
Vol 4 (3) ◽  
pp. 152-156 ◽  
Author(s):  
Nathan Collier ◽  
Hany Radwan ◽  
Lisandro Dalcin ◽  
Victor M. Calo

Author(s):  
Weiqi Wang ◽  
Wenjie Chen ◽  
Guoru Huang

AbstractThis study focused on the performance and limitations of the local inertial approximation form model (LIM) of the shallow water equations (SWEs) when applied in urban flood modeling. A numerical scheme of the LIM equations was created using finite volume method with a first-order spatiotemporal Roe Riemann solver. A simplified urban stormwater model (SUSM) considering surface and underground dual drainage system was constructed based on LIM and the US Environmental Protection Agency Storm Water Management Model. Moreover, a complete urban stormwater model (USM) based on the SWEs with the same solution algorithm was used as the evaluation benchmark. Numerical results of the SUSM and USM in a highly urbanized area under four rainfall return periods were analyzed and compared. The results reveal that the performance of the SUSM is highly consistent with that of the USM but with an improvement in computational efficiency of approximately 140%. In terms of the accuracy of the model, the SUSM slightly underestimates the water depth and velocity and is less accurate when dealing with supercritical flow in urban stormwater flood modeling. Overall, the SUSM can produce comparable results to USM with higher computational efficiency, which provides a simplified and alternative method for urban flood modeling.


2011 ◽  
Vol 4 ◽  
pp. 1828-1833 ◽  
Author(s):  
Nathan Collier ◽  
Hany Radwan ◽  
Lisandro Dalcin ◽  
Victor M. Calo

2021 ◽  
Vol 14 (11) ◽  
pp. 7117-7132
Author(s):  
Geoffroy Kirstetter ◽  
Olivier Delestre ◽  
Pierre-Yves Lagrée ◽  
Stéphane Popinet ◽  
Christophe Josserand

Abstract. The French Riviera is very often threatened by flash floods. These hydro-meteorological events, which are fast and violent, have catastrophic consequences on life and property. The development of forecasting tools may help to limit the impacts of these extreme events. Our purpose here is to demonstrate the possibility of using b-flood (a subset of the Basilisk library http://basilisk.fr/, last access: 8 November 2021), which is a 2D tool based on the shallow-water equations and adaptive mesh refinement. The code is first validated using analytical test cases describing different flow regimes. It is then applied to the Toce river valley physical model produced by ENEL-HYDRO in the framework of the CADAM project and on a flash-flood case over the urbanized Toce area produced during the IMPACT project. Finally, b-flood is applied to the flash flood of October 2015 in Cannes in south-eastern France, which demonstrates the feasibility of using software based on the shallow-water equations and mesh refinement for flash-flood simulation in small watersheds (less than 100 km2) and on a predictive computational timescale.


2008 ◽  
Vol 19 (5) ◽  
pp. 575-606 ◽  
Author(s):  
R. ALONSO ◽  
M. SANTILLANA ◽  
C. DAWSON

In this paper, we study basic properties of the diffusive wave approximation of the shallow water equations (DSW). This equation is a doubly non-linear diffusion equation arising in shallow water flow models. It has been used as a model to simulate water flow driven mainly by gravitational forces and dominated by shear stress, that is, under uniform and fully developed turbulent flow conditions. The aim of this work is to present a survey of relevant results coming from the studies of doubly non-linear diffusion equations that can be applied to the DSW equation when topographic effects are ignored. In fact, we present proofs of the most relevant results existing in the literature using constructive techniques that directly lead to the implementation of numerical algorithms to obtain approximate solutions.


Sign in / Sign up

Export Citation Format

Share Document