Variations of disinfection by-product levels in small drinking water utilities according to climate change scenarios: a first assessment

2015 ◽  
Vol 7 (1) ◽  
pp. 1-15 ◽  
Author(s):  
I. Delpla ◽  
A. Scheili ◽  
S. Guilherme ◽  
G. Cool ◽  
M. J. Rodriguez

In Québec, Canada, shifts in climate patterns (i.e., rainfall increase) could have consequences on source water quality due to the intensification of surface/groundwater runoff contamination events, leading to a decline in drinking water treatment efficiency and ultimately disinfection by-products (DBPs) formation following treatment. To assess the impacts of climate change (CC) scenarios on DBP formation, a suite of models linking climate to DBPs was used. This study applies three emissions scenarios (B1, A1B and A2) for three 30-year horizons (2020, 2050 and 2080) in order to produce inputs to test several DBP models (total trihalomethanes (TTHMs), haloacetic acids and haloacetonitriles). An annual increase is estimated for all DBPs for each CC scenario and horizon. The highest seasonal increases were estimated for winter for all DBP groups or species. In the worst-case scenario (A2-2080), TTHMs could be affected more particularly during winter (+34.0%), followed by spring (+16.1%) and fall (+4.4%), whereas summer concentrations would remain stable (−0.3 to +0.4%). Potentially, small water utilities applying only a disinfection step could be more affected by rising TTHMs concentrations associated with CC than those having implemented a complete water treatment process (coagulation–flocculation, filtration and disinfection) with +13.6% and +8.2% increases respectively (A2-2080).

1999 ◽  
Vol 48 (5) ◽  
pp. 177-185 ◽  
Author(s):  
O. Griffini ◽  
M. L. Bao ◽  
D. Burrini ◽  
D. Santianni ◽  
C. Barbieri ◽  
...  

2009 ◽  
Vol 9 (4) ◽  
pp. 379-386 ◽  
Author(s):  
S. A. Baghoth ◽  
M. Dignum ◽  
A. Grefte ◽  
J. Kroesbergen ◽  
G. L. Amy

For drinking water treatment plants that do not use disinfectant residual in the distribution system, it is important to limit availability of easily biodegradable natural organic matter (NOM) fractions which could enhance bacterial regrowth in the distribution system. This can be achieved by optimising the removal of those fractions of interest during treatment; however, this requires a better understanding of the physical and chemical properties of these NOM components. Fluorescence excitation-emission matrix (EEM) and liquid chromatography with online organic carbon detection (LC-OCD) were used to characterize NOM in water samples from one of the two water treatment plants serving Amsterdam, The Netherlands. No disinfectant residual is applied in the distribution system. Fluorescence EEM and LC-OCD were used to track NOM fractions. Whereas fluorescence EEM shows the reduction of humic-like as well as protein-like fluorescence signatures, LC-OCD was able to quantify the changes in dissolved organic carbon (DOC) concentrations of five NOM fractions: humic substances, building blocks (hydrolysates of humics), biopolymers, low molecular weight acids and neutrals.


2021 ◽  
Vol 9 (01) ◽  
pp. 512-524
Author(s):  
Konan Lopez Kouame ◽  
◽  
Nogbou Emmanuel Assidjo ◽  
Andre Kone Ariban ◽  
◽  
...  

This article presents an optimization of the drinking water treatment process at the SUCRIVOIRE treatment station. The objective is to optimize the coagulation and flocculation process (fundamental process of the treatment of said plant)by determining the optimal dosages of the products injected and then proposes a program for calculating the optimal dose of coagulant in order to automatically determine the optimal dose of the latter according to the raw water quality. This contribution has the advantage of saving the user from any calculations the latter simply enters the characteristics of the raw effluent using the physical interface of the program in order to obtain the optimum corresponding coagulant concentration. For the determination of the optimal coagulant doses, we performed Jar-Test flocculation tests in the laboratory over a period of three months. The results made it possible to set up a polynomial regression model of the optimal dose of alumina sulfate as a function of the raw water parameters. A program for calculating the optimal dose of coagulant was carried out on Visual Basic. The optimal doses of coagulant obtained vary from 25, 35, 40 and 45 mg/l depending on the characteristics of the raw effluent. The model obtained is: . Finally, verification tests were carried out using this model on the process. The results obtained meet the WHO drinkability standards for all parameters for a settling time of two hours.


Sign in / Sign up

Export Citation Format

Share Document