scholarly journals Disinfection by-products in desalinated and blend water: formation and control strategy

2018 ◽  
Vol 17 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Shakhawat Chowdhury

Abstract Desalinated seawater is the major source of drinking water in many countries. During desalination, several activities including pretreatment, desalination, stabilization, mixing, storage and distribution are performed. Few disinfectants are used during these activities to control the biofouling agents and microbiological regrowth. The reactions between the disinfectants and natural organic matter (NOM), bromide and iodide form disinfection by-products (DBPs) in product water. The product water is stabilized and mixed with treated freshwater (e.g., groundwater) to meet the domestic water demands. The DBPs in desalinated and blend water are an issue due to their possible cancer and non-cancer risks to humans. In this paper, formation and distribution of DBPs in different steps of desalination and water distribution systems prior to reaching the consumer tap were reviewed. The variability of DBPs among different sources and desalination processes was explained. The toxicities of DBPs were compared and the strategies to control DBPs in desalinated water were proposed. Several research directions were identified to achieve comprehensive control on DBPs in desalinated water, which are likely to protect humans from the adverse consequences of DBPs.

2007 ◽  
Vol 55 (1-2) ◽  
pp. 307-313 ◽  
Author(s):  
J. Lee ◽  
D. Lee ◽  
J. Sohn

Maintenance of adequate chlorine residuals and control of disinfection byproducts (DBPs) throughout water distribution systems is currently an important issue. In particular, rechlorination can be a powerful tool in controlling adequate chlorine residual in a large distribution system. The patterns of chlorine decay and formation of DBPs due to rechlorination are different from those of chlorination; chlorine decay is slower and trihalomethane (THM) formation is lower with rechlorination. The present study evaluates whether existing predictive models for chlorine residual and THM formation are applicable in the case of rechlorination. A parallel first-order decay model represents the best simulation results for chlorine decay, and an empirical power function model (modified Amy model) with an introduced correction coefficient (ϕ1, ϕ2) is more suitable to THM formation.


2013 ◽  
Vol 185 (9) ◽  
pp. 7675-7691 ◽  
Author(s):  
Jin Lee ◽  
Eun-Sook Kim ◽  
Bang-Sik Roh ◽  
Seog-Won Eom ◽  
Kyung-Duk Zoh

2014 ◽  
Vol 472 ◽  
pp. 1145-1151 ◽  
Author(s):  
Syam S. Andra ◽  
Konstantinos C. Makris ◽  
George Botsaris ◽  
Pantelis Charisiadis ◽  
Harris Kalyvas ◽  
...  

2007 ◽  
Vol 6 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Walt Bayless ◽  
Robert C. Andrews

Haloacetic acids (HAAs) are produced by the reaction of chlorine with natural organic matter and are regulated disinfection by-products of health concern. Biofilms in drinking water distribution systems and in filter beds have been associated with the removal of some HAAs, however the removal of all six routinely monitored species (HAA6) has not been previously reported. In this study, bench-scale glass bead columns were used to investigate the ability of a drinking water biofilm to degrade HAA6. Monochloroacetic acid (MCAA) and monobromoacetic acid (MBAA) were the most readily degraded of the halogenated acetic acids. Trichloroacetic acid (TCAA) was not removed biologically when examined at a 90% confidence level. In general, di-halogenated species were removed to a lesser extent than the mono-halogenated compounds. The order of biodegradability by the biofilm was found to be monobromo > monochloro > bromochloro > dichloro > dibromo > trichloroacetic acid.


Author(s):  
Xin Li ◽  
Shipeng Chu ◽  
Tuqiao Zhang ◽  
Tingchao Yu ◽  
Yu Shao

Abstract Leakages in water distribution systems (WDSs) are a worldwide problem, which can result in an intolerable burden in satisfying the water demands of the consumers. There is an urgent demand to develop technologies that can detect and localize the leakage in a timely and efficient manner. The monitoring data of the WDS is a typical time series, and there is a certain spatiotemporal correlation between the data provided by the devices distributed at different locations of the WDS. This paper proposes a novel model-based method for WDS leakage localization. The method is characterized by (1) developing the dominant sensor sequence for each candidate leakage node to improve the localization accuracy based on the spatial correlation analysis; (2) utilizing multiple time steps of the measurements which are temporal varying correlated; (3) ranking leakage regions and nodes by their possibility to contain the true leakage. A realistic WDS is used to evaluate the performance of the method. Results show that the method can accurately and efficiently localize the leakage.


Sign in / Sign up

Export Citation Format

Share Document