scholarly journals Molecular detection of Acanthamoeba spp. in Seven Crater Lakes of Laguna, Philippines

2020 ◽  
Vol 18 (5) ◽  
pp. 776-784
Author(s):  
Lea D. Ballares ◽  
Frederick R. Masangkay ◽  
Joseph Dionisio ◽  
Oliver Villaflores ◽  
Maria Ruth Pineda-Cortel ◽  
...  

Acanthamoeba spp. are ubiquitous free-living amoeba with genotypes that cause severe pathology of the eyes, central nervous systems, and rare reports of cutaneous infections. The Seven Crater Lakes are freshwater water resources in Laguna, Philippines primarily used for aquaculture and tourism. A total of 16 surface water samples were collected from different sampling areas per Crater Lake and placed in sterile plastic containers. Samples were filtered using 1.2 μm pore size, glass microfiber filter. Filtered sediments were placed on non-nutrient agar lawned with Escherichia coli and incubated aerobically at 35 °C for 14 days. Six out of 16 water samples exhibited amoebic growth. Cystic stages revealed circular to stellate morphology under light microscopy which were initially classified as Acanthamoeba spp. DNA from positive isolates were made to react with polymerase chain reaction using Acanthamoeba specific primers JDP1 5′-GGCCCAGATCGTTTACCGTGAA-3′ and JDP2 5′-TCTCACAAGCTGCTAGGGAGTCA-3′confirmed the presence of several Acanthamoeba species. Phylogenetic analysis revealed the presence of seven isolates belonging to Acanthamoeba genotypes T4, T5, and T9. The presence of potentially pathogenic Acanthamoeba genotypes in the Seven Crater Lakes of Laguna signifies risk to human health which necessitates the development of programs, policies, and guidelines on the understanding, prevention, and management of potential human infections.

Author(s):  
Ahmad Z Al-Herrawy ◽  
Mohamed A Marouf ◽  
Mahmoud A. Gad

Genus Acanthamoeba causes 3 clinical syndromes amebic keratitis, granulomatous amebic encephalitis and disseminated granulomatous amebic disease (eg, sinus, skin and pulmonary infections). A total of 144 tap water samples were collected from Giza governorate, Egypt. Samples were processed for detection of Acanthamoeba species using non-nutrient agar (NNA) and were incubated at 30oC. The isolates of Acanthamoeba were identified to species level based on the morphologic criteria. Molecular characterization of the Acanthamoeba isolates to genus level was performed by using PCR. The obtained results showed that the highest occurrence percentage of Acanthamoeba species in water samples was observed in summer season (38.9%), then it decreased to be 30.6% in spring and 25% in each of autumn and winter. PCR analysis showed that 100% of 43 Acanthamoeba morphologically positive samples were positive by genus specific primer. In the present study eight species of Acanthamoeba can be morphologically recognized namely Acanthamoeba triangularis, Acanthamoeba echinulata, Acanthamoeba astronyxis, Acanthamoeba comandoni, Acanthamoeba griffini, Acanthamoeba culbertsoni, Acanthamoeba quina and Acanthamoeba lenticulata. In conclusion, the most common Acanthamoeba species in tap water was Acanthamoeba comandoni


2019 ◽  
Vol 35 (3) ◽  
pp. 220-223
Author(s):  
Jo Kizu ◽  
Christina Neuman ◽  
Luke Le Grand ◽  
Wenjun Liu

ABSTRACT An arbovirus surveillance military exercise was conducted to assess the risk of Ross River virus (RRV) and Barmah Forest virus (BFV) in the Australian Defence Force (ADF) Wide Bay training area (WBTA), northeastern Australia, in April 2018. Of the 5,540 female mosquitoes collected, 3,702 were screened for RRV and BFV by quantitative reverse transcription–polymerase chain reaction in a field laboratory. One pool of Verrallina funerea was positive for RRV and 8 pools (7 pools of Aedes vigilax and 1 pool of Culex annulirostris) were positive for BFV. Phylogenetic analysis of the complete nucleotide sequence of the E2 protein subgrouped both RRV and BFV with viruses previously isolated from human infections, indicating the potential risk of RRV and BFV infection to ADF personnel while training in WBTA. This is the 1st time that both RRV and BFV have been detected in a military training area.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Chai Fung Pui ◽  
Lesley Maurice Bilung ◽  
Kasing Apun ◽  
Lela Su’ut

Various prevalence studies onLeptospirain animals and humans, as well as environmental samples, had been conducted worldwide, including Malaysia. However, limited studies have been documented on the presence of pathogenic, intermediate, and saprophyticLeptospirain selected animals and environments. This study was therefore conducted to detectLeptospiraspp. in rats, soil, and water from urban areas of Sarawak using the polymerase chain reaction (PCR) method. A total of 107 rats, 292 soil samples, and 324 water samples were collected from April 2014 to February 2015. PathogenicLeptospirawas present in 5.6% (6/107) of rats, 11.6% (34/292) of soil samples, and 1.9% (6/324) of water samples. IntermediateLeptospirawas present in 2.7% (8/292) of soil samples and 1.9% (6/324) of water samples. SaprophyticLeptospirawas present in 10.3% (11/107) of rats, 1.4% (4/292) of soil samples, and 0.3% (1/324) of water samples. From this study, 76Leptospiraspp. were isolated. Based on DNA sequencing, the dominantLeptospiraspp. circulating in urban areas of Sarawak are pathogenicLeptospira noguchii, intermediateLeptospira wolffiiserovar Khorat, and saprophyticLeptospira meyeri, respectively. Overall, this study provided important surveillance data on the prevalence ofLeptospiraspp. from rats and the environment, with dominant local serovars in urban areas of Sarawak.


2019 ◽  
Vol 18 (2) ◽  
pp. 244-251 ◽  
Author(s):  
Nastaran Paknejad ◽  
Elham Hajialilo ◽  
Mehrzad Saraei ◽  
Amir Javadi

Abstract Free-living amoeba (FLA), including Acanthamoeba and Naegleria are facultative parasites in humans. The amoeba have widespread distribution in various water sources. The aim of this study was isolation and molecular identification of Acanthamoeba and Naegleria isolated from swimming pools and also hot and cold tub waters in Qazvin province. The samples (166 water samples) were cultured to isolate and identify positive specimens. PCR (polymerase chain reaction) amplification, sequencing and phylogenetic analysis were conducted to confirm the isolated species and genotypes of amoeba. According to morphological characterizations, 18.6% of specimens were identified as FLA, which in 71% were Acanthamoeba by PCR method. Molecular analysis revealed that 36.3%, 18.1% and 4.5% of Acanthamoeba specimens were identified as T3, T4 and T11 Acanthamoeba genotypes, respectively. Protacanthamoeba bohemica (27.2%) and Acanthamoeba sp. (4.5%) were found among the specimens. The results of osmo-tolerance and thermo-tolerance assays demonstrated that 50% of T3 and 25% of T4 genotypes of Acanthamoeba were highly pathogenic parasites. The molecular approach showed the presence of Naegleria lovaniensis (9%) in hot tub water of swimming pools. This study demonstrated that the swimming pools and hot tub water in Qazvin province were contaminated with Acanthamoeba and Naegleria species.


2011 ◽  
Vol 11 (4) ◽  
pp. 418-425 ◽  
Author(s):  
S. W. Lam ◽  
H. B. Zhang ◽  
L. Yu ◽  
C. H. Woo ◽  
K. N. Tiew ◽  
...  

In this study, a quantitative species-specific polymerase chain reaction (PCR) method to rapidly detect E. histolytica in water is developed. First, the specificity of E. histolytica PCR detection was verified by using species-specific primers of 16S-like rRNA genes to clearly differentiate it from the closely related amoebae species E. dispar and E. moshkovskii. The sensitivity of this method was subsequently determined using purified E. histolytica genomic DNA and culture cells as PCR reaction templates. Results indicated that conventional PCR visualized on 1% agarose gel was able to detect as low as 0.02 pg genomic DNA and 5 cells, while real-time PCR could detect 0.01 pg genomic DNA and 2 cells of E. histolytica. The protocols for E. histolytica PCR detection in real water samples were then optimized by spiking E. histolytica cells into tap water and reservoir raw water samples. A two-round centrifugation treatment to concentrate amoeba cells directly as a PCR template was the most effective way to detect E. histolytica in spiked tap water samples, while DNA extraction after concentrating amoeba cells was required for spiked reservoir raw water samples. The detection limit of 50 E. histolytica cells in 100 ml tap water was achieved in 2 h from sample collection to real-time PCR data readout. With these established protocols, 78 tap water samples, 11 reservoir raw water samples and 4 feed water samples from Singapore water supply systems were analyzed by both conventional PCR and real-time PCR methods. No E. histolytica cell was detected in tested samples.


Sign in / Sign up

Export Citation Format

Share Document