scholarly journals Environmental impact assessment for a meat processing industry in Turkey: wastewater treatment plant

2018 ◽  
Vol 13 (3) ◽  
pp. 692-704
Author(s):  
Pelin Soyertaş Yapıcıoğlu

Abstract The meat processing industry has many unfavorable impacts to the environment in Turkey. One of these impacts is wastewater treatment. Meat processing wastewater contains large amounts of proteins, fats, nutrients such as nitrogen, and pathogenic and non-pathogenic microorganisms and viruses. The high organic and hazardous content of wastewater causes environmental challenges for the flora and fauna in receiving water bodies unless it is treated adequately. Due to these reasons, the treatment process to be implemented should be the least damaging to the environment. In this study, three treatment scenarios that include a UASB (upflow anaerobic sludge bed) reactor (Scenario-1), an advanced oxidation process that includes UV/H2O2 treatment (Scenario-2) and a membrane bioreactor (Scenario-3) have been studied for a meat processor's wastewater treatment plant. For these three scenarios, an environmental impact assessment was undertaken using the Fine-Kinney method. The evaluation results revealed that Scenario-2 has the smallest environmental impact value with 475. Scenario-1 has the highest total environmental impact value as 765. Scenario-3's environmental impact value is 637. According to the evaluation results, the UV/H2O2 process is the most applicable technology for wastewater treatment in Turkey's meat industry.

2013 ◽  
Vol 41 (5) ◽  
pp. 429-436 ◽  
Author(s):  
Anna Gotkowska-Płachta ◽  
Zofia Filipkowska ◽  
Ewa Korzeniewska ◽  
Wojciech Janczukowicz ◽  
Beverly Dixon ◽  
...  

2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


2016 ◽  
Vol 11 (1) ◽  
pp. 47-55
Author(s):  
Nadeem Khalil ◽  
Tarique Ahmad

Amongst the technologies available, the up flow anaerobic sludge blanket (UASB) process has been one of the most widely applied methods for municipal waste water treatment especially in countries of warm climatic conditions like India. However, past about one decade has witnessed rapid decline in the UASB popularity and its implementation. There has been criticism from various sections on the performance of UASB reactors for not complying with the prescribed discharge standards. It is a general hypothesis that the UASB reactors are not meant for diluted waste water like municipal sewage when typically the BOD is less than 150 mg/l, COD 250 mg/l and sulphates are more than 150mg/l. An attempt has been made through this study to investigate the reasons on the basis of quality assessment and field observations on UASB reactors and it’s post-treatment of a newly commissioned (start-up) municipal (sewage) wastewater treatment plant commonly called ‘STP’ having capacity of 14 million litres per day (MLD). Study was aimed to know the gaps during the commissioning stage which could be related to poor removal efficiencies. This paper briefly discusses some issues related to operation and maintenance of the UASB plants with purpose for improvements.


2019 ◽  
Vol 14 (4) ◽  
pp. 908-920 ◽  
Author(s):  
Oliver Saavedra ◽  
Ramiro Escalera ◽  
Gustavo Heredia ◽  
Renato Montoya ◽  
Ivette Echeverría ◽  
...  

Abstract This study aims to determine the seasonal variability in the performance of a medium size population wastewater treatment plant (WWTP) in Bolivia. The semi-arid area where the WWTP is located is characterized as agricultural land, with an annual rainfall of 500 mm and a mean temperature of 17 °C. The WWTP is built up of five modules, each one comprising two treatment trains composed of an upflow anaerobic sludge blanket (UASB) reactor and horizontal gravel filter. The performance of the full process has been determined based on water quantity and quality. Seven monitoring campaigns of chemical and physical wastewater characteristics were performed from March to December 2017. The measured effluent showed average removal efficiencies of 83 ± 8% and 37 ± 60% for total chemical oxygen demand (COD) and total suspended solids (TSS), respectively. The treatment system has proven to be efficient to remove organic matter and TSS, despite the occurrence of high COD and total solids (TS) influent concentrations, the accumulation of solids at all the processes and the variability of flow and temperature inside the UASB reactors. In order to improve further this efficiency, it is recommended to implement a primary sedimentation unit as a pretreatment for the UASB system that would help to homogenize both the flow and the quality of the influent.


Sign in / Sign up

Export Citation Format

Share Document